| 研究生: |
陳威澔 Wei-Hao Chen |
|---|---|
| 論文名稱: |
TensoriaCalc - 處理偽黎曼張量分析問題的使用者導向Mathematica套件 TensoriaCalc, an user-oriented Mathematica package to tackle semi-Riemannian tensor calculus problems |
| 指導教授: |
瞿怡仁
Yi-Zen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 324 |
| 中文關鍵詞: | TensoriaCalc 、張量微積分 、廣義相對論 、Mathematica套件 、微分幾何 |
| 外文關鍵詞: | TensoriaCalc, tensor calculus, General Relativity, Mathematica package, Differential Geometry |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
TensoriaCalc是一個使用者導向的Mathematica套件,首先是由我的導師瞿怡仁所建構的,並且由我顯著地擴展套件。經由使用者提供度量張量以及坐標系,可以快速算出重要的幾何張量如克里斯多福符號、愛因斯坦張量等,微分幾何及張量分析中的常見運算如: 張量收縮、座標轉換、投影、偏導數、協變導數、外微分、李導數亦是可使用的功能。在本文中,我將解釋TensoriaCalc的基本運作及使用方式,並展示新添加的功能與建構的思路。最後,我將呈現如何使用TensoriaCalc來計算數個廣義相對論及微分幾何中經典的問題。
TensoriaCalc is an user-oriented Mathematica package developed to tackle tensor calculus problems. By giving a metric tensor and the coordinate set, the users can rapidly obtain tensor components of geometric objects such as Christoffel symbols, Einstein tensors, etc. Operations in tensor calculus and differential geometry, such as contraction, coordinate transformation, projection, partial derivative, covariant derivative, exterior derivative, Lie derivative, etc., are also available. In this paper, I will explain the basic structure of this package, firstly constructed by Yi-Zen Chu and significantly expanded by me. Also, the track of thought of my newly added functionality or structure will be presented. Eventually, I will show how to use TensoriaCalc to calculate several classic problems in General Relativity and Differential Geometry.
[1] Yi-Zen Chu. “Analytical Methods in Physics”. In: (2018). arXiv: 1701
.00776v2 [math-ph] .
[2] Yi-Zen Chu, Wei-Hao Chen, and Vaidehi Varma. TensoriaCalc. URL:
http://www.stargazing.net/yizen/Tensoria.html .
[3] Wolfram Research, Inc. Mathematica, Version 12.1.1.0). Champaign, IL,
2020. URL: https://www.wolfram.com/mathematica .
[4] Yi-Zen Chu and Vitaly Vanchurin. “Ideal MHD(-Einstein) Solutions Obeying
The Force-Free Condition”. In: (2016). arXiv: 1605.08786 [gr-qc]. URL:
http://www.stargazing.net/yizen/MHD.html .
[5] Brandon Carter. “Global Structure of the Kerr Family of Gravitational
Fields”. In: Phys. Rev. 174 (5 1968), pp. 1559–1571. DOI: 10 . 1103 / Phys-
Rev.174.1559.URL: https://doi.org/10.1103/physrevlett.106.221101
[6] P.C. van der Wijk. “The Kerr-Metric: describing Rotating
Black Holes and Geodesics”. In: (2007). URL:
https://inspirehep.net/files/4125fb620def30c9536ff6eb62ff583d
[7] C.W. F. Everitt et al. “Gravity Probe B: Final Results of a Space
Experiment to Test General Relativity”. In: Physical Review Letters
106.22 (2011). DOI: 10.1103/physrevlett.106.221101 . URL:
https://doi.org/10.1103%2Fphysrevlett.106.221101.
297
[8] Paul Bennett. “Gyroscopic Precessions in Relativity
and Gravitoelectromagnetism”. In: (2014). URL:
https://www.mas.ncl.ac.uk/library/display_pdf.php?id=249
[9] B Vetö. “Gravity Probe B experiment and gravitomagnetism”. In: European
Journal of Physics 31.5 (2010), p. 1123. DOI: 10.1088/0143-0807/31/5/014.
URL: https://dx.doi.org/10.1088/0143-0807/31/5/014.
[10] "The Kerr solution" INFN Roma URL:
https://www.roma1.infn.it/teongrav/onde19_20/kerr.pdf
[11] Bernard F. Schutz. Geometrical Methods of Mathematical Physics. Cambridge
University Press, 1980.