| 研究生: |
蔡忠達 Chung-Ta Tsai |
|---|---|
| 論文名稱: |
具羧酸及胺基之中孔洞材料的合成與鑑定 Synthesis and Characterization ofMesoporous Silicas with Carboxylic and Amine Functionality |
| 指導教授: |
高憲明
Hsien-Ming Kao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 中孔洞 、羧酸 、胺基 |
| 外文關鍵詞: | mesoporous, carboxylic, amine |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究主要是以 CES (Carboxyethylsilanetriol sodium salt) 與 TEOS (Tetraethyl orthosilicate) 為共同矽源,使用 P123 (Pluronic 123) 作為模板試劑,在反應溫度為 313 K 下直接合成具有羧酸官能基的中孔洞材料 SBA-15 ,之後使用 H2SO4 / H2O 溶劑在高溫下裂解界面活性劑 P123 ,藉由儀器鑑定可發現樣品在移除模板後,仍然可以得到具有 SBA-15 特性的中孔洞材料。經過合成與鑑定步驟,可知羧酸官能基化的中孔洞材料 SBA-15 ,其 CES 的含量可高達 60 %,同時對於中孔洞六角柱狀結構不會造成相轉變或是結構破壞,而表面積、孔洞體積以及孔洞直徑也均會隨著 CES 含量的增加而遞減。
在另一部份則是使用 TMOS (Tetramethyl orthosilicate) 、 CNTES (3-(Triethoxysilyl)-Propionitrile) 及APTMS ((3- Aminopropyl)-trimethoxysilane)為共同矽源,以 C16TEABr (Cetyltrietylammonium bromide) 作為模板試劑,在酸性條件下透過直接合成法合成同時含有羧酸及胺基官能基的中孔洞材料 SBA-1,實驗條件中藉由改變不同的酸量、不同的水熱時間、不同的矽源以及不同的反應溫度,探討對於合成具有羧酸及胺基雙官能基的 SBA-1 的影響。
Well-ordered mesoporous silicas SBA-15 functionalized with extremely high loadings of pendant carboxylic acid groups, up to 50 mol% of the silicon sites without degradation of ordered structures, have been successfully synthesized via co-condensation of tetraethoxysilane (TEOS) and carboxyethylsilanetriol sodium salt (CES) templated with a triblock polymer Pluronic P123 under acidic conditions.
On the other hand, well-ordered cubic mesoporous silicas SBA-1 functionalized with carboxylic and amino functional groups have been successfully synthesized via the co-condensation of 3-(Triethoxysilyl)-Propionitrile (CNTES) , tetramethoxysilane (TMOS) and (3-Aminopropyl)-trimethoxysilane (APTMS) templated by cetyltriethylammonium bromide (CTEABr) under strongly acidic conditions. In order to optimize the degree of the structural ordering of the bifunctional mesoporous silicas SBA-1, a wide range of synthesis conditions such as synthesis temperature, loading of functional groups, hydrothermal periods, and acid concentrations was systematically investigated.
The materials obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), nitrogen sorption measurements , 13C and 29Si magic angle spinning (MAS), IR, transmission electron microscope (TEM) and thermogravimetric analysis (TGA).
1.McBain, J. N. “The Sorption of Gases and Vapors by Solids”, George Rutledge and Sons Ltd., London, 1932.
2.Bennett, J. M.; Blackwell, C. S.; Cox, D. E. Interzeolite Chemistry, Am. Chem. Soc. Symp. Ser.218, American Chemical Society, Washington, D. C., 1983.
3.吳榮宗, 工業觸媒概論, 增訂版, 國興出版社, 1989.
4.Breck, D. W. Zeolite Molecular Sirves, Wiley :New York, 1 974.
5.Meier, W. J.; Olson D. Altas of Zeolite Structure
types, Butterworths, London, 1992.
6.IUPAC Manual of Symbols and Terminology, Appendix 2, Part 1, Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 57-638.
7.Vaughan, D. E. W. Catal. Today, 1998, 2, 187.
8.Dailey, J. S.; Pinnavaia, T. J. Chem. Mater. 1992, 4, 855-894.
9.Yanagaisawa, T.; Kuroda, K.; Bull, C. K. Chem. Soc. Japan. 1988, 61, 3743.
10.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuil, J. C.; Beck, J. S. Nature 1992, 359, 710-712.
11.Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonwicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.; Schlenker, J. L. J. Am. Chem. Soc. 2002, 114, 10833-10845.
12.Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
13.Neumann, R.; Khenkin, K. Chem. Commun. 1996, 2643-2644.
14.Charkaborty, B.; Pulikottil, A. C.; Viswanathan, B. Catal. Lett. 1996, 39, 63.
15.Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem. 1996, 100, 9906-9910.
16.Corma, A.; Navaro, M. T.; Pariente, J. P.; Sanchez, F. Stud. Surf. Sci. Catal. 1994, 84, 69.
17.Reddy, J. S.; Sayari, A. Chem. Commun. 1995, 2231-2232.
18.Wu, C.-G.; Bein, T. Science 1994, 264, 1757-1759.
19.Wu, C.-G.; Bein, T. Science 1994, 266, 1013-1015.
20.Wu, C.-G.; Bein, T. Chem. Mater. 1994, 6, 1109-1112.
21.(a) Lee, Y.S.; Surjadi, D.; Rathman, J. F. Langmuir 1996, 12, 6202-6210.
(b) Ko, C. H.; Ryoo, R. J. Chem. Soc. Chem. Chem. 1996, 2467.
22.Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C. Sadler, P. J. Chem. Commun. 1995, 1803-1804.
23.Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. Chem. Commun. 1995, 1617-1618.
24.Busio, K.; Janchen, J.; van Hooff, J. H. C. Microporous Mater. 1995, 5, 211-218.
25.Luan, Z. Zhou, W.; Cheng, C.- F.; Klinowski, J. Faraday Trans. 1996, 91, 5161.
26.Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.; Martin, A.; Fricke, R. Microporous Mater. 1997, 9, 133- 139.
27.Weglarski, J.; Datka, J.; He, H.; Kilnowski, J. Faraday Trans. 1996, 92, 5161.
28.Mokaya, R.; Jones, W. Chem. Commun. 1996, 983-984.
29.Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994, 368, 317-321.
30.Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491.
31.Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.; Kim, J. M.; Stucky, G.; Shim, H. J.; Ryoo, R. Nature 2000, 408, 449-453.
32.Schubert, U.; Husing, N. Synthesis of inorganic materials, chapter 4, Wiley-Interscience publications: New York, 2000.
33.(a) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G.D. Science. 1998, 279, 548-552.
(b) Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024-6036.
34.Pluronic poly(alkene oxide) triblock copolymers are trademarked products of BASF, Mt. Olive, NJ.
35.(a) Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D. Nature. 1994, 368, 317-321.
(b) Chen, C.; Li, H.; Davis, M. E. Microporous Mater. 1993, 2, 17.
(c) Attard, G. S.; Glyde, J. C. Nature. 1995, 378, 366- 368.
(d) Göltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431-436.
36.(a) Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865-867.
(b) Bagshaw, S. A.; Prouzet, E.; Pinnavaia. T. J. Science. 1995, 269, 1242-1244.
37.(a) Prouzet, E.; Pinnavaia. T. J. Angew. Chem. Int. Ed.; 1997, 36, 516-518.
(b) Antonietti, M.; Göltner, C. G. Angew. Chem. Int. Ed.; 1997, 36, 910-928.
(c) Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. J. Am. Chem. Soc. 1997, 119, 3596-3610.
38.(a) Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925-11933.
(b) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater.; 2000, 12, 1961-1968.
(c) Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuk, V.; Jaroniec, M. J. Phys. Chem. B. 2000, 104, 11465-11471.
(d) Ravikovitch, P. I.; Neimark, A. V. J. Phys. Chem. B. 2001, 105, 6817-6823.
39.Kim, J. M.; Sakamoto, Y.; Hwang, Y. K.; Kwon, Y.-U.; Terasaki, O.; Park, S.-E.; Stucky, G. D. J. Phys. Chem. B. 2002, 106, 2552-2558.
40.Todros, T. F. “Surfactant”, Academic Press, London, 1984.41. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc. Faraday Trans. 1976, 72, 1525-1568.
42.Tanford, C. “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”, Wiley, New York, 1973.
43.Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed, VHC, New York, 1999.
44.Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and Surfaces A”, 1996, 111, 195-202.
45.(a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T. van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W. Science. 1994, 265, 1413-1415.
(b) Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
(c) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Liu, J.; Kemner, K. M. Science. 1997, 276, 923-926.
46.(a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.; Gong, M. L. Adv. Meter. 1998, 10, 161-165.
(b) Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998, 117, 53-53.
(c) Brunel, D. Microporous Mesoporous Mater. 1999, 27, 329-344.
(d) Impens, N. R. E. N.; Van der Voort, P.; Vansant, E. F. Microporous Mesoporous Mater. 1999, 28, 217-232.
(e) Clark, J. H.; Macquarrie, D. J.; Wilson, K. Stud. Surf. Sci. Catal. 2000, 129, 251-251.
(f) Walcarius, A.; Etienne, M.; Lebeau, B. Chem. Mater. 2003, 15, 2161-2173.
47.Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter. 2000, 12, 1403-1419.
48.(a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem. Mater. 1995, 7, 1829-1832.
(b) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285- 3295.
49.Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
50.(a) Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Comm. 1996, 1367-1368.
(b) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000, 12, 188-196.
(c) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.; Qzin, G. A. J. Mater. Chem. 2002, 12, 3452-3457.
51.Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201-202.
52.(a) Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13, 2173-2178.
(b) Kao, H. M.; Shen, T. Y.; Wu, J. D.; Lee, L. P. Micro. and Meso. Mater. 2008, 110, 461-471.
(c) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P. J. Phys. Chem. B 2001, 105, 9935-9942.
(d) Kao, H. M.; Liao, C. H.; Palani, A.; Liao, Y. C. Micro. and Meso. Mater. 2008, 113, 212-223.
53.Macquarrie, D. J.; Jackson, D. B.; Mdoe, J. E.; Clark, J. H. New J. Chem. 1999, 23, 539-544.
54.Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 124, 6383-6392.
55.Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151- 3168.
56.(a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.; Yoshina- Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am. Chem. Soc. 2002, 46, 13886-13895.
(b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski, I. L.; Ripmeester, J. R. Chem. Mater.; 2000, 12, 3857-3863.
(c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.; Li, C. J. Phys. Chem. B. 2004, 108, 7934-7937.
(d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 5660-5661.
57.(a) Lauher, J. W.; Hoffmann, R. J. Am . Chem. Soc. 1976, 98, 1729-1742.
(b) Heck, R. F.; Breslow, D. S. J. Am . Chem. Soc. 1961, 83, 4023-4027.
(c) Brown, C, K.; Wilkinson G.;J. Chem. Soc. A. 1970,2753.
58.Bond, G. C. ‘‘Heterogeneous Catalysis:Principles and Applications.’’2nd ed. Clarendon Press, Oxford, UK,1987.
59.Miessler, G. L.; Tarr, D.A. ‘‘Inorganic Chemistry’’ , 2nd ed, Prentice Hall, New York, 1999. pp. 498.
60.Satterfield, C. N. “Heterogeneous Catalysis in practice.”, McGrew-Hill, New York, 1980.
61.Zheng, Y.; Shengyang, T.; Jinxiang Y. J. Mater. Chem. 2006, 16, 2347-2353.
62.Tang, Q.; Xu, Y.; Wu. D. Journal of Solid State Chemistry 2006, 179, 1513-1520.
63.Ho, K. Y.; McKay, G.; Yeung, K. L. Langmuir 2003, 19, 3019-3024.
64.Nanguo, L.; Roger A. A.; Jeffrey, B. Chem. Commun., 2003, 370-371.
65.Chia-min Yang;Yangin Wang. Phys. Chem. Chem. Phys. 2004, 6, 2461-2467.
66.Wahab, M. A.; Kim, I.; Ha, C. S. Micro. and Meso. Mater. 2004, 69, 19-27.
67.Rosenholm, J. M.; Czuryszkiewicz, T.; Kleitz, F. Langmuir 2007, 23, 4315-4323.
68.Bruzzoniti, M. C.; Prelle, A.; Sarzanini, C.; Onida, B.; Fiorilli, S.; Garrone. E. J. Sep. Sci. 2007, 30, 2414-2420.
69.Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.-S.; Che, S. J. Mater. Chem. 2007, 17, 1216-1221.
70.Macquarrie, D. J. Chem. Commun. 1996, 1961-1962.
71.Macquarrie, D. J. Chem. Commun. 1997, 1781-1782.
72.Zhang, S.; Gao, L. Journal of Solid State Chemistry. 2000, 152, 447-452.
73.Che, S.; Garcia-Bennett, A.E. Nature Mater. 2003, 2, 801-805.
74.Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J. J. Am. Chem. Soc. 1940, 62, 1723-1732.
75.Yokoi, T.; Yoshitake, H.; and Tatsumi, T.; J. Mater. Chem. 2004, 14, 951- 957.
76.Wang, X. G.; Lin, S. K. Kyle; Chan, C. C. Jerry; Cheng S. F. J. Phys. Chem. B 2005, 109, 1763-1769.
77.Song, S.-W.; Hidajat, K.; Kawi S. Langmuir 2005, 21, 9568-9575.
78.Han, L.; Ruan, J.; Li, Y. S.; Terasaki, O.; Che, S. Chem. Mater. 2007, 19, 2860-2867.
79.Yang, C. M.; Zibrowius, B.; Schmidt, W.; Schüth, F. Chem. Mater. 2004, 16, 2918-2925.
80.(a) Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317- 318.
(b) Lim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater. 1998, 10, 467-470.
(c) Van Rhijn, W. M.; De Vos, D. E.; Bossaert, W. D.; Bullen, J.; Wouters, B.; Grobet, P.; Jacobs, P. A. Stud. Surf. Sci. Catal. 1998, 117, 183.
81.Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 2000, 12, 2448-2459.
82.國家同步輻射中心 (NSRRC), 新竹市, 台灣
83.Baiker, A. International Chem. Eng., 1985, 17, 25.
84.Brunauer, S.; Deming, L. S.; Deming, W. S.; Teller, E. J. Am. Chem.
Soc., 1940, 62, 1723.
85.王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國 立編譯館, 渤海堂文化公司, 台北, 1993.
86.Barrett, E. P.; Joyner, L. S.; Halenda, P. P. J. Am. Chem. Soc., 1951, 73, 373-380.
87.Gregg, S. J.; Sing, K. S. W.; Adsorption, Surface Area and Porosity, 2nd Ed., Academic press, New York, NY, 1982.
88.de Boer, J. H. in “ The Structure and Properties of Porous”.
89.Ertl, G.; KnÖzinger, H.; Weitkamp, J. “ Handbook of Heterogeneous Catalysis ”, vol 3, VCH D-69451 Weinheim, 1997, 1058.
90.Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin,
R. G. J. Chem. Phys. 1995, 103, 6951-6958.
91.(a) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1958, 182, 1659-1659.
(b) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature 1959, 183, 1802-1803.
92.Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem. Phys. 1971, 56, 1776-1776.