| 研究生: |
陳詩柔 Shi-Rou Chen |
|---|---|
| 論文名稱: |
模擬自由落體動力行為的接近不可壓縮直接施力沉浸邊界法 A Nearly Incompressible Direct Forcing Immersed Boundary Method for Simulating the Dynamics of Freely Falling Solid Balls |
| 指導教授: |
楊肅煜
Suh-Yuh Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 不可壓縮納維-斯托克斯方程式 、流固耦合 、人工壓縮法 、直接施力法 、沉浸邊界法 、沉澱作用 |
| 外文關鍵詞: | incompressible Navier-Stokes equations, fluid-solid interaction, artificial compressibility method, direct forcing method, immersed boundary method, sedimentation |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要實現一種接近不可壓縮直接施力的沉浸邊界法,用以求解流體和固體耦合問題,並模擬二維空間中圓形自由落體的動力行為。此方法結合了人工壓縮法、直接施力沉浸邊界法和一種預測校正程序,並整合一個碰撞模型。首先我們使用懲罰技術來弱化納維-斯托克斯方程組中的不可壓縮條件,然後引入一個僅分布在固體範圍上的虛擬力,並將其加入流體的動量方程式中,以期符合沉浸固體的無滑動邊界條件。對於時間變數的離散,我們引用二階向後差分公式離散方程組中的時間變量,改進了cite{C}一文中的時間精度,並使用一個時間二階的泰勒近似逼近非線性對流項。關於空間變數的離散,我們在交錯的笛卡爾網格上使用二階中央差分法進行速度場與壓力場的空間變數離散。在實現該接近不可壓縮直接施力的沉浸邊界法時,我們運用一種用預測校正方法,並在該程序中導入一個碰撞模型來模擬固體間碰撞所引發的排斥力。最後,我們經由一系列的二維自由落體模擬實驗來驗證此方法所具有的合理效能。
The aim of this thesis is to realize a nearly incompressible direct forcing
immersed boundary method for solving fluid-solid intersection problems
and simulating the dynamics of freely falling solid balls in two-dimensional space.
This approach combines the artificial compressibility method and
the direct-forcing immersed boundary method with
a prediction-correction process, and also integrated with a collision model.
In this thesis, we first employ the penalty technique to weaken
the incompressibility condition in the incompressible Navier-Stokes equations.
Then we introduce a virtual force which is distributed on the solid object region
and appended to the fluid momentum equation to fulfill
the no-slip boundary condition at the immersed solid boundary.
For the time-discretization, we employ the second-order backward difference to discretize
the time variable, which improves the time accuracy of the method considered in \cite{C},
and we approximate the nonlinear convection term by using a second-order Taylor formula.
For the space-discretization, we use the second-order central difference
over the staggered Cartesian grid for the velocity and pressure fields.
The nearly incompressible direct forcing immersed boundary method is implemented
in a prediction-correction way.
In that process, we also integrate a collision model into the method to mimic
the repulsion force arising from body-body or body-wall collisions
in the fluid-solid interaction process.
Finally, a series of numerical experiments of freely falling solid balls
in two-dimensional space are performed to illustrate the effectiveness of the method.
[1] J. Blasco, M. C. Calzada, and M. Mar´ın, A fictitious domain, parallel numerical method for rigid particulate flows, Journal of Computational Physics, 228
(2009), pp. 7596-7613.
[2] Y.-H. Chang, Numerical Simulation of Unsteady Complex Flows Using an Artificial Compressibility-Immersed Boundary Method with Direct Forcing, Master
Thesis, National Central University, Taiwan, January 2018.
[3] M.-J. Chern, Y.-H. Kuan, G. Nugroho, G.-T. Lu, and T.-L. Horng, Directforcing immersed boundary modeling of vortex-induced vibration of a circular cylinder, Journal of Wind Engineering and Industrial Aerodynamics, 134
(2014), pp. 109-121.
[4] M.-J. Chern, D. Z. Noor, C.-B. Liao, and T.-L. Horng, Direct-forcing immersed boundary method for mixed heat transfer, Communications in Computational Physics, 18 (2015), pp.1072-1094.
[5] M.-J. Chern, W.-C. Shiu, and T.-L. Horng, Immersed boundary modeling
for interaction of oscillatory flow with cylinder array under effects of flow
direction and cylinder arrangement, Journal of Fluids and Structures, 43 (2013),
pp. 325-346.
[6] H. Choi and P. Moin, Effects of the computational time step on numerical
solutions of turbulent flow, Journal of Computational Physics, 113 (1994), pp.
1-4.
[7] A. J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics
of Computation, 22 (1968), pp. 745-762.
[8] A. J. Chorin, On the convergence of discrete approximations to NavierStokes equations, Mathematics of Computation, 23 (1969), pp. 341-353.
[9] B. E. Griffith, An accurate and efficient method for the incompressible
Navier-Stokes equations using the projection method as a preconditioner,
Journal of Computational Physics, 228 (2009), pp. 7565-7595.
[10] J.-L. Guermond, P. Minev, and J. Shen, An overview of projection methods
for incompressible flows, Computer Methods in Applied Mechanics and Engineering, 195 (2006), pp. 6011-6045.
[11] J.-L. Guermond and P. Minev, High-order time stepping for the incompressible Navier-Stokes equations, SIAM Journal on Scientific Computing, 37 (2015),
pp. A2656-A2681.
[12] J.-L. Guermond and P. D. Minev, High-order time stepping for the NavierStokes equations with minimal computational complexity, Journal of Computational and Applied Mathematics, 310 (2017), pp. 92-103.
[13] R. Glowinski, T.-W. Pan, T. I. Hesla, D. D. Joseph and J. Periaux, A fictitious ´
domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow, Journal
of Computational Physics, 169 (2001), pp. 363-426.
[14] T.-L. Horng, P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A simple direct-forcing
immersed boundary projection method with prediction-correction for fluidsolid interaction problems, Computers & Fluids, 176 (2018), pp. 135-152.
[15] P.-W. Hsieh, M.-C. Lai, S.-Y. Yang, and C.-S. You, An unconditionally energy
stable penalty immersed boundary method for simulating the dynamics of
an inextensible interface interacting with a solid particle, Journal of Scientific
Computing, 64 (2015), pp. 289-316.
[16] P.-W. Hsieh, S.-Y. Yang, and C.-S. You, A direct-forcing immersed boundary
projection method for simulating the dynamics of freely falling solid bodies
in an incompressible viscous fluid, Annals of Mathematical Sciences and Applications, accepted for publication, 2019.
[17] T. Kajishima, S. Takiguchi, H. Hamasaki, and Y. Miyake, Turbulence structure of particle-laden flow in a vertical plane channel due to vortex shedding,
JSME International Journal, Series B, 44 (2001), pp. 526-535.
[18] T. Kajishima and S. Takiguchi, Interaction between particle clusters and
particle-induced turbulence, International Journal of Heat and Fluid Flow, 23
(2002), pp. 639-646.
[19] Y. Kim and M.-C. Lai, Simulating the dynamics of inextensible vesicles by
the penalty immersed boundary method, Journal of Computational Physics,
229 (2010), pp. 4840-4853.
[20] Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic
boundary with mass, Physics of Fluids, 19 (2007), 053103.
[21] J. Kim, D. Kim, and H. Choi, An immersed-boundary finite-volume method
for simulations of flow in complex geometries, Journal of Computational
Physics, 171 (2001), pp. 132-150.
[22] D. Z. Noor, M.-J. Chern, and T.-L. Horng, An immersed boundary method
to solve fluid-solid interaction problems, Computational Mechanics, 44 (2009),
pp. 447-453.
[23] A. Quarteroni, F. Saleri, and A. Veneziani, Factorization methods for the numerical approximation of Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 188 (2000), pp. 505-526.
[24] C. S. Peskin, The immersed boundary method, Acta Numerica, 11 (2002), pp.
479-517.
[25] C. S. Peskin, Flow patterns around heart valved: a numerical method, Journal
of Computational Physics, 10 (1972), pp. 252-271.
[26] M. Uhlmann, An immersed boundary method with direct forcing for the
simulation of particulate flows, Journal of Computational Physics, 209 (2005),
pp. 448-476.
[27] C.-S. You, On Two Immersed Boundary Methods for Simulating the Dynamics of
Fluid-Structure Interaction Problems, PhD Dissertation, National Central University, Taiwan, June 2016.