跳到主要內容

簡易檢索 / 詳目顯示

研究生: 區世明
Sai-Meng Ao
論文名稱: 同化GNSS RO對TAHOPE IOP3梅雨鋒面個案降雨預報之影響
Impact of GNSS RO assimilation on rainfall forecast for TAHOPE IOP3 Meiyu front case
指導教授: 張偉裕
Wei-Yu Chang
陳舒雅
Shu-Ya Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 81
中文關鍵詞: 掩星技術資料同化梅雨鋒面降雨非局地溢相位
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討同化福爾摩沙衛星七號(FORMOSAT-7/COSMIC-2)全球
    導航衛星系統掩星觀測(GNSS RO)對梅雨鋒面個案降雨預報的影響。以
    2022 年6月6–7日發生於臺灣的梅雨鋒面豪雨個案(TAHOPE IOP3)為研究
    對象,使用WRFDA混合資料同化系統(3DEnVar)進行同化實驗,同化
    FORMOSAT-7 GNSS RO 資料及全球電信系統(GTS)常規觀測,並使用ERA5再分析資料進行預報效果驗證。
    結果顯示,同化GNSS RO資料(EPH組)顯著改善模式初始分析場的水
    汽與溫度結構,特別是在鋒面附近增加南側海洋上低層水汽含量,降低鋒面附近的溫度場誤差,改善了鋒面的結構特徵,使分析場更貼近ERA5再分析資料。此外,透過模式對不同降雨時段的詳細暴雨成因分析可知,同化GNSS RO資料可更準確捕捉鋒面附近的水汽輻合與對流發展過程,有效提升降水位置及強度的預報表現。同時,透過系集敏感度分析顯示,GNSS RO資料的加入有助於降低系集預報的不確定性,增強系集成員間降雨預報的一致性,尤其對短期(0–24小時)降雨預報的改善最為顯著。整體而言,EPH組在各個預報時段內的均方根誤差(RMSE)均較僅同化GTS組顯著降低,空間相關係數(SCC)則顯著提升。
    綜合而言,本研究證實同化FORMOSAT-7 GNSS RO資料能有效提升梅雨
    鋒面豪雨個案的預報性能,尤其在暴雨成因分析與系集預報穩定性方面的提升更具實際預報價值。


    This study examines the impact of assimilating Global Navigation Satellite System Radio Occultation (GNSS RO) observations on the rainfall forecast of a Mei-Yu frontal
    heavy precipitation event that occurred on 6–7 June 2022 (TAHOPE IOP3). The Weather Research and Forecasting (WRF) model, coupled with the hybrid three dimensional ensemble-variational (3DEnVar) data assimilation system (WRFDA), was employed to incorporate both GNSS RO and conventional observations into the model’s initial conditions.

    To evaluate the influence of GNSS RO assimilation, a simulation experiment that assimilated both GNSS RO and conventional data (referred to as EPH) was compared with a control experiment that assimilated only conventional observations (referred to as GTS). The results demonstrated that GNSS RO assimilation notably improved the moisture and temperature distributions near the Mei-Yu front, yielding a frontal structure more consistent with the ERA5 reanalysis.

    Compared to the GTS experiment, the EPH simulation exhibited lower forecast errors and higher correlation coefficients for temperature, moisture, and wind fields. In terms of precipitation, the EPH experiment more accurately reproduced both the spatial distribution and intensity of the heavy rainfall along the front. Forecast verification
    metrics further confirmed that the EPH outperformed the GTS run.

    In summary, assimilating GNSS RO observations significantly enhanced the model analysis and precipitation forecast for this Mei-Yu frontal heavy rainfall event.

    摘要 I ABSTRACT II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XI 一、 前言 1 二、 研究方法與校驗資料簡介 5 2–1 資料來源 5 2–1–1 FORMOSAT-7 與GNSS-RO 5 2–1–2 全球電信系統觀測資料(GTS) 6 2–1–3 臺灣區域豪雨觀測與預報實驗(TAHOPE) 6 2–1–4 歐洲中期預報中心第五代再分析場資料(ERA5) 7 2–2 模擬實驗設計 8 2–2–1 數值模式與同化系統 8 2–2–2 WRFDA中GNSS-RO資料的前向觀測算子 9 2–2–3 實驗設計 10 2–3 校驗方法 10 2–3–1 均方根誤差(RMSE) 11 2–3–2 相對均方根誤差(RRMSE) 11 2–3–3 空間相關係數(SCC) 12 2–3–4 臨界成功指數(CSI) 12 2–3–5 公正預兆得分(ETS) 13 2–3–6 鄰域空間驗證法(FSS) 13 2–4 鋒面系統客觀定位方法 14 三、 模擬結果與討論 15 3–1 資料同化結果綜合討論 15 3–2 區域綜合驗證 17 3–3 梅雨鋒面位置預報驗證 19 3–4 降水預報驗證及成因分析 20 3–4–1 6月7日 00-03UTC暴雨分析 21 3–4–2 6月7日 03-06UTC暴雨分析 22 四、 系集同化預報 24 五、 微物理參數化敏感度測試 25 六、 結語 26 參考文獻 28 附表與附圖 31 附錄 66

    Chang, C. C., & Yang, S. C. (2022). Impact of assimilating Formosat-7/COSMIC-II GNSS radio occultation data on heavy rainfall prediction in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 33(7).
    Chen, S., Kuo, Y., & Huang, C. (2020). The impact of GPS RO data on the prediction of tropical cyclogenesis using a nonlocal observation operator: An initial assessment. Monthly Weather Review, 148, 2701–2717.
    Chen, S. Y., Huang, C. Y., Kuo, Y. H., Guo, Y. R., & Sokolovskiy, S. (2009). Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVar and its impact on the prediction of a typhoon event. Terrestrial, Atmospheric and Oceanic Sciences, 20(1), 45–61.
    Chen, S.-Y., Chen, S.-H., Kuo, Y.-H., Huang, C.-Y., & Chen, C.-S. (2014). Evaluating the impact of the COSMIC RO bending angle data on predicting the heavy precipitation episode on 16 June 2008 during SoWMEX IOP8. Monthly Weather Review, 142(10), 4139–4163.
    Chen, S. Y., Nguyen, T. C., & Huang, C. Y. (2021). Impact of radio occultation data on the prediction of Typhoon Haishen (2020) with WRFDA hybrid assimilation. Atmosphere, 12(11), 1397.
    Chien, F. C., & Kuo, Y. H. (2010). Impact of FORMOSAT-3/COSMIC GPS radio occultation and dropwindsonde data on regional model predictions during the 2007 Mei-yu season. GPS Solutions, 14, 51–63.
    Cucurull, L., Derber, J. C., Treadon, R. E., & Purser, R. J. (2007). Assimilation of global positioning system radio occultation observations into NCEP’s global data assimilation system. Monthly Weather Review, 135(9), 3174–3193.
    Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., & Simmons, A. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049.
    Hamill, T. M., Whitaker, J. S., Kleist, D. T., Fiorino, M., & Benjamin, S. G. (2011). Predictions of 2010’s tropical cyclones using the GFS and ensemble‐based data assimilation methods. Monthly Weather Review, 139, 3243–3247.
    Huang, C. Y., Kuo, Y. H., Chen, S. Y., Terng, C. T., et al. (2010). Impact of GPS radio occultation data assimilation on regional weather predictions. Proceedings of International Workshop on GPS Radio Occultation, Taipei, Taiwan.
    Kleist, D. T. (2012). An evaluation of hybrid variational‐ensemble data assimilation for the NCEP GFS. University of Maryland, College Park, MD, USA.
    Kuo, Y. H., Liu, H., Guo, Y. R., Terng, C. T., & Lin, Y. T. (2008). Impact of FORMOSAT-3/COSMIC data on typhoon and Mei-yu prediction. In Recent Progress in Atmospheric Sciences (458–483).
    Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., & Hardy, K. R. (2000). Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 105(D23), 26961–26989.
    Lamb, H. H. (1950). Types and spells of weather around the year in the British Isles: Annual trends, seasonal structure of the year, singularities. Quarterly Journal of the Royal Meteorological Society, 76(330), 393–429.
    Ma, Z., Kuo, Y. H., & Sokolovskiy, S. (2010). Improvements of GPS radio occultation data assimilation at JCSDA: Nonlocal operator and bending angle formulation. Terrestrial, Atmospheric and Oceanic Sciences, 21(4), 543–556.
    Poli, P., Moll, P., Rabier, F., & Puech, D. (2002). Assimilation of GPS radio occultation data in the ECMWF system. ECMWF Technical Memorandum, No. 373.
    Pook, M., McIntosh, P., & Meyers, G. (2012). The synoptic and mesoscale structure of cool season rainfall events in the coastal southeastern Australian region. Weather and Forecasting, 27(1), 65–82.
    Routray, A., Mohanty, U. C., Osuri, K. K., Kar, S. C., & Niyogi, D. (2016). Impact of satellite radiance data on simulations of Bay of Bengal tropical cyclones using the WRF-3DVar modeling system. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2285–2303.
    Schwartz, C. S., Liu, Z., Huang, X. Y., Kuo, Y. H., & Fong, C. T. (2013). Comparing limited-area 3DVAR and hybrid variational-ensemble data assimilation methods for typhoon track forecasts: Sensitivity to outer loops and vortex relocation. Monthly Weather Review, 141, 4350–4372.
    Shao, Y., Derber, J., Treadon, R., & Joiner, J. (2009). The impact of GPS radio occultation data on NOAA’s GSI system analysis and forecast. Monthly Weather Review, 137(7), 1864–1880.
    Sokolovskiy, S., Rocken, C., Hunt, D., & Schreiner, W. (2005). On the use of radio occultation data in meteorology. Meteorologische Zeitschrift, 14(4), 145–154.
    Su, S. H., Kuo, H. C., Hsu, L. H., & Yang, Y. T. (2012). Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. Journal of the Meteorological Society of Japan, 90, 721–736.
    Ware, R., Exner, M., Feng, D., Gorbunov, M., Hardy, K., Herman, B., Kuo, Y. H., Meehan, T., Rocken, C., Schreiner, W., & Sokolovskiy, S. (1996). GPS sounding of the atmosphere from low Earth orbit: Preliminary results. Bulletin of the American Meteorological Society, 77(1), 19–40.
    Xin, B., Zawadzki, I., & Fabry, F. (1997). A comparison of two techniques for the extraction of radar reflectivity–rain rate (Z–R) relationships. Journal of Applied Meteorology, 36(4), 422–432.
    陳泰然、王重傑與楊進賢(2002)。臺灣梅雨季對流降水之時空分佈特徵。大氣科學,30(1),83–96。
    黃清勇與迮嘉欣(2011)。GPS 掩星與其他資料同化對臺灣地區颱風和梅雨模擬之影響。大氣科學,39(1),25–52。
    張巧薇、江建霆、劉高源、蘇世顥(2019)。臺灣地區鋒面系統客觀辨識方法之比較。大氣科學,47(1),1–29。
    林得恩(2023)。梅雨鋒面肇致坡地災害之先兆環境研究。氣象預報與分析,255,1–16。
    交通部中央氣象署(2023)。2022年梅雨季東亞夏季季風分析。
    交通部中央氣象署(2022)。中央氣象局110年氣候年報。臺北:交通部中央氣象署。

    QR CODE
    :::