跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林彥孚
Yen-Fu Lin
論文名稱: 對位六聯苯分子薄膜方向性控制及光電性質研究
Molecular Orientation Control in p-Hexaphenyl Films and Their Electrical/Optical Property Study
指導教授: 楊吉水
Jye-Shane Yang
陶雨台
Yu-Tai Tao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 分子方向性控制有機半導體對位六聯苯
外文關鍵詞: Orientation control, p-Hexaphenyl, Organic semiconductors
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本篇主要在研究蒸鍍對位六聯苯分子在乾淨金表面以及不同自組裝單層分子膜表面,表面沉積的有機薄膜中的分子是否因為不同的表面性質而有不同的方向性。經由反射式紅外線光譜以及NEXAFS光譜,我們已經證明對位六聯苯分子蒸鍍在乾淨金表面時分子呈現平躺狀態,而在具有自組裝分子薄膜之表面上則呈現站立的型態。這兩種不同方向性的的薄膜在X-Ray繞射圖譜也可以清楚地加以解釋,並且在螢光光譜的強度上亦有極大的差異,在分子平躺的薄膜中螢光的強度是分子呈現站立的薄膜的數十至數百倍,這非常特別的現象與分子的方向性有絕對的關係。
    若在刷磨處理過的聚亞甲基薄膜上作蒸鍍對位六聯苯實驗,由原子力顯微鏡的影像並輔以反射式紅外線光譜,確信分子受到配向膜的影響,因而晶體在表面上呈現特殊方向性的生長,推論對位六聯苯分子為與表面產生最小能量的狀態,而趨向平貼於表面且順著表面高分子鏈的方向。
    此時我們已然可以在金表面利用SAM修飾、乾淨金表面以及刷磨處理的高分子薄膜,取得分子站立、平躺以及平面二維方向的有機半導體薄膜,對於未來應用於有機半導體元件具有潛在的應用價值。


    Abstract
    The growth of p-hexaphenyl films by thermal evaporation on clean gold surface and self-assembled monolayer (SAM) modified gold surface was investigated by reflection absorption IR spectroscopy, NEXAFS technique and X-Ray diffraction. The results showed that p-hexaphenyl molecules oriented parallel to clean gold whereas they oriented perpendicular to SAM-modified Au surface, irrespective of the terminal functional group of the SAM involved. The film with flat-lying molecules and the film with perpendicular molecules exhibited very different fluorescence intensity, with flat-lying molecules showing 10~100 times higher intensity.
    Oriented thin films of p-hexaphenyl molecules were also prepared by vacuum deposition on rubbed polymethylene surfaces. Reflection absorption IR spectra showed that the p-hexaphenyl molecules were oriented parallel to the rubbed surface. AFM microscopy showed that crystals of p-hexaphenyl are aligning perpendicular to the rubbing direction. The alignment effect may come from interaction between oriented polymer chains and the molecules.
    Thus orientation control of organic semiconducting p-hexaphenyl in three dimensions can be achieved by various substrates. Use of these films in fabricating organic electronic devices will be explored further.

    總目錄 摘要(I) Abstract(II) 總目錄(III) 圖目錄(VII) 壹、緒論(1) 1-1有機半導體導論(1) 1-1.1傳統無機半導體理論(2) 1-1.2小分子有機半導體理論(3) 1-1.3有機半導體之材料(5) 1-1.4有機半導體薄膜製備(6) 1-1.5有機半導體之應用(8) 1-2有機薄膜分子方向性之控制(11) 1-2.1有機薄膜取向附生特性(12) 1-2.2分子自組裝特性(13) 1-3有機自組裝單層分子膜導論(14) 1-3.1烷基硫醇自組裝分子薄膜(16) 1-3.2聯苯基硫醇自組裝分子薄膜(18) 1-3.3混合單層分子薄膜(19) 貳、研究動機與方法(22) 參、實驗部分(23) 3-1實驗用藥品(23) 3-1-1合成用藥品(23) 3-1-2基材來源(23) 3-1-3清洗矽晶片用藥品(24) 3-1-4有機薄膜用藥品(24) 3-2實驗步驟(24) 3-2-1合成部分(24) 3-3薄膜製備(31) 3-3-1金片基材製備(31) 3-3-2有機自組裝單層分子薄膜製備(31) 3-3-3混合自組裝單層分子薄膜製備(32) 3-3-4磷酸基表面製備(32) 3-3-5銀炔化物表面製備(32) 3-3-6聚亞甲基薄膜製備(33) 3-3-7有機薄膜蒸鍍(33) 3-4實驗用儀器與技術(33) 3-4-1真空蒸鍍機(34) 3-4-2核磁共振光譜儀(34) 3-4-3傅立葉紅外線光譜儀(34) 3-4-4 Near Edge X-Ray Absorption Fine Structure(35) 3-4-5螢光光譜儀(36) 3-4-6 X光繞射儀(37) 3-4-7原子力顯微鏡(37) 3-4-8掃描式電子顯微鏡(39) 肆、結果與討論(40) 4-1自組裝分子薄膜系統(40) 4-1-1反射式紅外線光譜結果(40) 4-1-1.1飽和二十烷基硫醇(40) 4-1-1.2苯甲基硫醇與聯苯基硫醇(41) 4-1-1.3 16-硫醇十六烷酯磷酸(45) 4-1-1.4 銀-炔十六烷硫醇(47) 4-1-1.5混合單層分子薄膜(49) 4-1-2蒸鍍對位六聯苯薄膜結果(51) 4-1-2-1反射式紅外線光譜結果(51) 4-1-2-1.1室溫下蒸鍍對位六聯苯分子(53) 4-1-2-1.2變溫蒸鍍對位六聯苯分子(55) 4-1-2-1.3不同分子膜高溫蒸鍍結果(60) 4-1-2-2 NEXAFS光譜結果 (62) 4-1-2-3 X光繞射圖譜(65) 4-1-2-4螢光光譜結果(67) 4-1-2-5顯微鏡觀察結果(69) 4-2聚亞甲基表面之系統(72) 4-2-1反射式紅外線光譜結果(72) 4-2-2原子顯微鏡觀察結果(72) 4-2-3蒸鍍對位六聯苯薄膜結果(73) 4-2-3-1反射式紅外線光譜結果(73) 4-2-3-2顯微鏡觀察結果(76) 伍、結論(80) 陸、參考資料(82)

    參考文獻
    1.A. J. Heeger, J. Phys. Chem. B 2001, 105, 8475.
    2.(a)T. Hebner, C. Wu, D. Marcy, et al., Appl. Phys. Lett. 1998, 72, 519 .(b)H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, Science 2000, 290, 2123.
    3.F. Pschenitzha and J. Sturm, Appl. Phys. Lett. 1999, 74, 1913.
    4.C. J. Dury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, Appl. Phys. Lett. 1998, 73, 108.
    5.J. A. Rogers, Z. Bao, and L. Dhar, Appl.Phys. Lett. 1998, 73, 294.
    6.A. Pochettino, Atti Acad. Lincei Rend. XV (1), 355 (1906) and XV (2), 171(1906).
    7.M. Volmer, Ann. Physik 1913, 40, 775.
    8.(a)J. G. Laquindanum, H. E. Katz, A. J. Lovinger, A. Dodabalapur, Chem. Meter. 1996, 8, 2542. (b)D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett. 1997, 18, 87. (c)G. Horowitz, Adv. Mater. 1998, 10, 365. (d)S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 1998, 72, 1854. (e)Ch. D. Dimitrakopoulos, I. Kymissis, S. Purushothaman, D. A. Neumayer, P. R. Duncombe, R. B. Laibowitz, Adv. Mater. 1999, 11, 1372.
    9.(a)D. L Morel, A. K. Ghosh, T. Feng, E. L. Stogryn, P. E. Purwin, R. F. Shaw, C. Fishman, Appl. Phys. Lett. 1978, 495, 32. (b)A. K. Ghosh, T. Feng, J. Appl. Phys. 1978, 49, 183. (c)C. W. Tang, Appl. Phys. Lett. 1986, 48, 183 (d)D. Wohrle, D Meissner, Adv. Mater. 1991, 3, 129. (e)G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    10.S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, Appl. Phys. Lett. 2000, 77, 2310.
    11.J Kalinowski, J. Phys. D: Appl. Phys. 1999, 32, R179.
    12.(a)T. Holstein, Ann. Phys. 1959, 8, 325 and 343. (b)E. A. Silinsh, A. Klimkans, S. Larsson, V. Cápek, Chem. Phys. 1995, 198, 311. (c)E. A. Silinsh, V. Cápek, Organic Molecular Crystals. (d)G. G. Robertson, N. Aspley, R. W. Munn, Physics Reports 1980, 60, 59.
    13.H. Sirringhaus, P. J. Brown, R. H. Frined, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
    14.D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, D. G. Schlom, Appl. Phys. Lett. 1997, 71, 3853.
    15.G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, Solid State Commun. 1989, 72, 381.
    16.D. D. Eley, Nature 1948, 162, 819.
    17.(a)H. Sirringhaus, R. H. Friend, X. C. Li, S. C. Moratti, A. B. Holmes, N. Feeder, Appl. Phys. Lett. 1997, 71, 3871. (b)W. Li, H. Katz, A. J. Lovinger, J. G. Laguindanum, Chem. Mater. 1999, 11, 458. (c)H. E. Katz, J. Johnson, A. J. Lovinger, W. Li, J. Am. Chem. Soc. 2000, 122, 7787. (d)H. E. Katz, Z. Bao, S. L. Gilat, Acc. Chem. Res. 2001, 34, 359.
    18.H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699.
    19.(a)Z. Xie, M. S. A. Abdou, X. Lu, M. J. Deen, S. Holdcroft, Can. J. Phys. 1992, 70, 1171. (b)J. H. Burroughes, C. A. Jones, R. H. Frined, Nature 1988, 335, 137. (c)H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett. 1993, 63, 1372.
    20.I. Langmuir, J. Am. Chem. Soc. 1917, 39, 1848.
    21.K. A. Blodgett, J. Am. Chem. Soc. 1935, 57, 1007.
    22.R. Farchioni, G. Grosso, Organic Electronic Materials.
    23.M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
    24.S. A. Vanslyke, C. W. Tang, Appl. Phys. Lett. 1987, 51, 913.
    25.(a)Y.-Y. Noh, J.-J. Kim, Y. Yoshida, K. Yase, Adv. Mater. 2003, 15, 699. (b)K. R. Amundson, B. J. Sapjeta, A. J. Lovinger, Z. Bao, Thin Solid Films 2002, 414, 143. (c)A. M. van de Graats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Müllen, H. D. Chanzy, H. Sirrinhhaus, R. H. Friend, Adv. Mater. 2003, 15, 495. (d)J. F. Moulin, M. Brinkmann, A. Thierry, J. C. Wittmann, Adv. Mater. 2002, 14, 436. (e)J. C. Wittmann, C. Straupé, S. Meyer, B. Lotz, P. Lang, G. Horowitz, F. Garnier, Thin Solid Films 1998, 333, 272. (f)M. Brinkmann, J. C. Wittmann, Chem, Mater. 2002, 14, 904.
    26.(a)J. Paloheimo, P. Kuivalainen, H. Stubb, E. Vuorimaa, P. Yli-Lahti, Appl. Phys. Lett. 1990, 56, 1157. (b)R. M. Metzger, Acc. Chem. Res. 1999, 32, 950. (c)Z. J. Donhauser, B. A. Mantooth, K. F. Kelly, L. A. Bumm, J. D. Monnell, J. J. Stapleton, D. W. Price, Jr., A. M. Rawlett, D. L. Allara, J. M. Tour, P. S. Weiss, Science 2001, 292, 2303. (d)X. D. Cui, A. Primak, X. Zarate, J. Tomfohr, O. F. Sankey, A. L. Moore, T. A. Moore, D. Gust, G. Harris, S. M. Lindsay, Science 2001, 294, 571. (e)J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 1999, 286, 1550. (f)C. Zhou, M. R. Deshpande, M. A. Reed, L. Jones, J. M. Tour, Appl. Phys. Lett. 1997, 71, 611.
    27.Y. Toda, H. Yanagi, Appl. Phys. Lett. 1996, 69, 2315.
    28.J. Stöhr, M. G. Samant, J. Electron Spectrosc. Rel. Phenom. 1999, 98-99, 189.
    29.X. L. Chen, A. J. Lovunger, Z. Bao, J. Sapjeta, Chem. Mater. 2001, 13, 1341.
    30.C.-C. Chen, J.-J. Lin, Adv. Mater. 2001, 13, 136.
    31.W. C. Bigelow, D. L. Pickett, W. A. Zisman, J. Colloid Interface Sci. 1946, 1, 513.
    32.R. G. Nuzzo, D. L. Allara, J. Am. Chem. Soc. 1983, 105, 4481.
    33.E. Delamarche, B. Michel, H. Kang, C. Gerber, Langmuir 1994, 10, 4103.
    34.(a)D. L. Allara, R. G. Nuzzo, Langmuir 1985, 1, 54. (b)P. E. Laibinis, J. J. Hickinan, M. S. Wrighton, G. M. Whitesides, Science 1989, 245, 845. (c)Y.-T. Tao, M.-T. Lee, S.-C. Chang, J. Am. Chem. Soc. 1993, 115, 9547.
    35.J. B. Brzoska, I. B. Azouz, F. Rondelez, Langmuir 1994, 10, 4367.
    36.K.-B. Lee, S.-J. Park, C. A. Mirkin, J. C. Smith, M. Mrksich, Science 2002, 295, 1702.
    37. (a)I. Willner, V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, J. Am. Chem. Soc. 1996, 118, 10321. (b)M. Wells, R. M. Crooks, J. Am. Chem. Soc. 1996, 118, 3988. (c)K. Sirkar, A. Revzin, M. V. Pishko, Anal. Chem. 2000, 72, 2930. (d)J. Rao, L. Yan, B. Xu, G. M. Whitesides, J. Am. Chem. Soc. 1999, 121, 2629. (e)J. M. Brockman, A. G. Frutos, R. M. Corn, J. Am. Chem. Soc. 1999, 121, 8044. (f)Y. Dong, C. Shannon, Anal. Chem. 2000, 72, 2371.
    38.(a)A. Kumar, H. A. Biebuyck, N. L. Abbott, G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 9188. (b)P. E. Laibinis, G. M. Whitesides, J. Am. Chem. Soc. 1992, 114, 9022.
    39.C. A. Widrig, C. A. Alves, M. D. Poter, J. Am. Chem. Soc. 1991, 113, 2805.
    40.S.-C. Chang, I. Chao, Y.-T. Tao, J. Am. Chem. Soc. 1994, 116, 6792
    41.B. Liedberg, Z. Yang, I. Engquist, M. Wirde, U. Gelius, G. Götz, P. Bäuerle, R.-M. Rummel, Ch. Ziegler, W. Göpel, J. Phys. Chem. B 1997, 101, 5951.
    42.C. D. Bain, G. M. Whitesides, J. Am. Chem. Soc. 1989, 111, 7164.
    43.R. M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Lüthi, L. Howald, H. J. Güntherodt, M. Fujihara, H. Takano, Y. Gotoh, Nature 1992, 359, 133.
    44.J. I. Siepmann, I. R. McDonald, Mol. Phys. 1992, 75, 255.
    45.Y. T. Tao, J. Phys. Chem. 1994, 98, 7630,
    46.(a)C. Hosokawa, H. Higashi,T. Kusumoto, Appl. Phys. Lett. 1993, 62, 3238. (b)G.Leising, S. Tasch, W. Graupner, In Handbook of Conducting Polymers, 2nd ed (Marcel Dekker: New York, 1997) p 847.
    47.D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, D. G. Schlom, Appl. Phys. Lett. 1997, 71, 3853.
    48.(a)T. J. Dingemans, N. S. Murthy, E. T. Samulski, J. Phys. Chem. B. 2001, 105, 8845. (b)P. Kovacic, R. M. Lange, J. Org. Chem. 1964, 29, 2416.
    49.A. Garnier, R. Yassar, G. Hajlaoui, F. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, J. Amer. Chem. Soc. 1993, 115, 8716.
    50.T. Vallant, H. Brunner, U. Mayer, H. Hoffmann, Langmuir 1998, 14, 5826.
    51.K. Seshadri, S. V. Atre, Y.-T, Tao, M.-T. Lee, D. L. Allara, J. Am. Chem. Soc. 1997, 119, 4698.
    52.P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y.-T, Tao, A. N. Parikh, R. G. Nuzzo, J. Am. Chem. Soc. 1991, 113, 7152.
    53.G. Varsanyi, Vibrational Spectra of Benzene Derivatives, 1921.

    QR CODE
    :::