| 研究生: |
江家宇 Chia-Yu Chiang |
|---|---|
| 論文名稱: |
基於全反射共光程偏振干涉術之折射率量測技術 Refractive index measurement based on total internal reflection with common-path polarization interferometry |
| 指導教授: |
李朱育
Ju-Yi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 折射率量測 、相位差極大值 、偏振干涉解相技術 、偏振相機 |
| 外文關鍵詞: | refractive index measurement, the maximum phase difference, polarization interference, polarization camera |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發一種「基於全反射共光程偏振干涉術之折射率量測技術」,能夠精準的量測不規則形狀物體折射率,且改善現階段量測固體折射率所遇到的問題。本技術是基於待測物與空氣之間的全反射現象進行折射率量測,不需額外的混和匹配液體做輔助即可完成。在全反射現象發生時,反射光的偏振態(垂直偏振與水平偏振)會引進不同的相位延遲。透過本研究提出的偏振干涉解相法可計算出反射光的相位差,並運用相位差極大值與折射率的量測方程式,即可推算不規則形狀物體的折射率。
本技術架構結合位移平台與偏振相機形成一共光程系統,不僅能快速調整待測物的全反射現象,也能夠降低架構的複雜性且達到快速擷取不同偏振態的光強度訊號。在共光程系統中,藉由光束聚焦與偏振干涉解相法,能在特定角度範圍的反射光中快速找到相位差極大值。另一方面,本技術的折射率量測方程式僅與單一參數(相位差極大值)有關。相較於其它量測方程式,不受焦距、曲率及精確入射角度等多參數的影響,適合用於量測不規則形狀物體的折射率。
本研究宗旨為開發折射率量測技術應用於不規則形狀的物體。本研究技術透過提出的偏振干涉解相技術與偏振相機做結合,分析出垂直與水平偏振的相位差極大值,再利用量測方程式計算不規則形狀物體的折射率。在量測實驗中,不規則形狀物體分別是不同材料的稜鏡、非球面透鏡及柱狀透鏡。運用這三種不規則形狀物體的量測,驗證本技術的性能及系統的解析度可達 1.6e-3 RIU (Refractive Index Unit)。
This study develops a refractive index measurement based on total internal reflection with common-path polarization interferometry. The measurement can accurately obtain the refractive index of irregularly shaped samples and improve problems encountered in the measurement of solids currently. Based on the total internal reflection between samples and the air, this measurement can be used for the refractive index of samples without any additional matching liquids. When the total internal reflection occurs, the polarization states of the reflected light (vertical polarization and horizontal polarization) will introduce different phase shifts. The phase difference of the reflected light can be found by the polarization interference method proposed in this study. Then, the refractive index of samples can be obtained by the measurement equation which is the relationship between the maximum phase difference and the refractive index.
The system of this measurement combines the displacement platform and the polarization camera to form a common optical path system, which can not only quickly adjust the total internal reflection, but also reduce the complication of the architecture and rapidly capture different polarization light intensity. In the common-path, by means of focused beam and polarization interference, the maximum phase difference can be quickly found in the reflected light with a range of incident angle. On the other hand, the refractive index measurement equation of this study is only related to the single parameter (the maximum phase difference). Compared with other measurement equations, it is not affected by multiple parameters such as focal length, curvature and precise incident angle, and is suitable for measuring the refractive index of irregularly shaped samples.
The purpose of this study is to develop the refractive index measurement applied to irregularly shaped samples. By the proposed polarization interference with a polarization camera to analyze the maximum value of the phase difference between vertical and horizontal polarization, the system can use the measurement equation to obtain the refractive index of samples. In this study, the irregularly shaped samples include different materials of prisms, aspherical lens and cylindrical lens. By means of the measurement of these irregularly shaped samples, we demonstrate the feasibility of the proposed measurement and its system resolution of refractive index can be achieved to 1.6e-3 RIU (Refractive Index Unit).
[1] 科技部產學合作計畫(開發型) , “全反射偏振干涉術之開發與折射率量測應用,” 國立中央大學機械工程學系(計畫編號:109-2622-E-008-009-CC2).
[2] L. Su, Y. Chen, A. Y. Yi, F. Klocke, and G. Pongs, “Refractive index variation in compression molding of precision glass optical components,” Appl. Opt. 47(10), 1662-1667 (2008).
[3] S. Liu, Z. Deng, J. Li, J. Wang, N. Huang, R. Cui, Q. Zhang, J. Mei, W. Zhou, C. Zhang, Q. Ye, and J. Tian, “Measurement of the refractive index of whole blood and its components for a continuous spectral region,” J. Biomed. Opt. 24(3), 035003 (2019).
[4] J. James, A. B. Unni, K. Taleb, J. P. Chapel, N. Kalarikkal, S. Varghese, G. Vignaud, and Y. Grohens, “Surface engineering of polystyrene–cerium oxide nanocomposite thin films for refractive index enhancement,” Nano-Struct. Nano-Obj. 17(1), 34-42 (2019).
[5] D. Tentori and J. R. Lerma, “Refractometry by minimum deviation: accuracy analysis,” Opt. Eng. 29(2), 160-168 (1990).
[6] G. Smith, “Liquid immersion method for the measurement of the refractive index of a simple lens,” Appl. Opt. 21(5), 755-757 (1982).
[7] R. S. Kasana, A. Goswami, and K. Soni, “Non-destructive multiple beam interferometric technique for measuring the refractive indices of lenses,” Opt. Commun. 236(4-6), 289-294 (2004).
[8] K. Soni and R. S. Kasana, “The use of defocussed position of a Ronchi grating for evaluating the refractive index of lens,” Opt. Laser Technol. 39(7), 1334-1338 (2007).
[9] K. Soni and R. S. Kasana, “The role of an acousto-optic grating in determining the refractive index of a lens,” Meas. Sci. Technol. 18(5), 1667-1671 (2007).
[10] C. Yang, L. Su, C. Huang, H. X. Huang, J. M. Castro, and A. Y. Yi, “Effect of packing pressure on refractive index variation in injection molding of precision plastic optical lens,”Adv. Polym. Technol. 30(1), 51-61 (2011).
[11] M. H. Chiu, J. Y. Lee, and D. C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” Appl. Opt. 36(13), 2936-2939 (1997).
[12] K. Chhaniwal, A. Anand, and C. S. Narayanamurthy, “Determination of refractive indices of biconvex lenses by use of a Michelson interferometer,” Appl. Opt. 45(17), 3985-3990 (2006).
[13] E. A. Barbosa and S. C. dos Santos, “Refractive and geometric lens characterization through multi-wavelength digital speckle pattern interferometry,” Opt. Commun. 281(5), 1022-1029 (2008).
[14] S. T. Lin and T. L. Lin, “Refractive index and thickness determinations using a dual-path Mach-Zehnder interferometer,” Key Eng. Mater. 381-382(1), 97-100 (2008).
[15] L. Chen, X. Guo, and J. Hao, “Lens refractive index measurement based on fiber point-diffraction longitudinal interferometry,” Opt. Express 21(19), 22389-22399 (2013).
[16] E. Hecht, “OPTICS,” Addison-Wesley, 4th Edition (2002).
[17] G. H. Meeten, “Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials,” Meas. Sci. Technol. 8(7), 728 (1997).
[18] T. Das and K. Bhattacharya, “Refractive index profilometry using the total internally reflected light field,” Appl. Opt. 56(33), 9241-9246 (2017).
[19] J. Rheims, J. Köser and T. Wriedt, “Refractive-index measurements in the near-IR using an Abbe refractometer,” Meas. Sci. Technol. 8(1), 601-605 (1997).
[20] R. M. A. Azzam, “Phase shifts that accompany total internal reflection at a dielectric-dielectric interface,” J. Opt. Soc. Am. A, 21(8), 1559-1563 (2004).
[21] S. Patskovsky, M. Meunier, and A. V. Kabashin, “Phase-sensitive silicon-based total internal reflection sensor,” Opt. Express 15(19), 12523-12528 (2007).
[22] M. H. Chiu, W. C. Chen, and C. T. Tan, “Small displacement measurements based on an angular-deviation amplifier and interferometric phase detection,” Appl. Opt. 54(10), 2885-2890 (2015).
[23] J. Y. Lee, T. K. Chou, and H. C. Shih, “Polarization-interferometric surface-plasmon-resonance imaging system,” Opt. Lett. 33(5), 434-436 (2008).
[24] Polarized Color Camera BFS-U3-51S5PC-C USB 3.1 Blackfly, https://www.edmundoptics.com/p/bfs-u3-51s5pc-c-usb3-blackflyr-s-polarized-color-camera/41901/
[25] Polymer Zero-Order四分之一波片, https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8635
[26] K. H. Chen, Y. H. Wang, J. H. Chen, and C. H. Lin, “Full-field refractive index measurement using absolute-phase total internal reflection heterodyne interferometry,” Appl. Phys. B 126(1), 109 (2020).
[27] K. Creath, “Calibration of numerical aperture effects in interferometric microscope objectives,” Appl. Opt. 28(16), 3333-3338 (1989).
[28] 偏振相機光傳感元件說明書(Polarization Image Sensor-Sony IMX250MYR),
https://www.sony-Semicon.co.jp/products/common/pdf/IMX250_253MZR_
MYR_Flyer_en.pdf
[29] National Instruments Corporation, “LabVIEW Machine Vision and Image Processing Course Manual,” April Edition (2008).
[30] 一般稜鏡規格,
https://www.edmundoptics.com/c/right-angle-image-reflection-prisms/668/
[31] 高折射率稜鏡規格,
https://www.edmundoptics.com/f/n-sf11-right-angle-prisms/12466/
[32] 材料折射率數值資料,
https://refractiveindex.info/
[33] 材料折射率數據庫,
https://www.filmetrics.com/refractive-index-database
[34] 非球面透鏡規格柱狀透鏡規格,
https://www.thorlabs.com/navigation.cfm?guide_id=2087
[35] B. S. Lin, M. J. Su, P. H. Cheng, P. J. Tseng, and S. J. Chen, “Temporal and Spatial Denoising of Depth Maps,” Sens. 15(8), 18506-18525 (2015).
[36] M. Camplani, T. Mantecón, and L. Salgado, “Depth-Color Fusion Strategy for 3-D Scene Modeling With Kinect,” IEEE Trans. Cybern. 43(6), 1560-1571 (2013).
[37] R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci. 1(1), 3-17 (1988).
[38] H. L. Hsieh, J. Y. Lee, L. Y. Chen, and Y. Yang, “Development of an angular displacement measurement technique through birefringence heterodyne interferometry,” Opt. Express 24(7), 6802-6813 (2016).
[39] 偏振片特性,
https://www.edmundoptics.com/knowledge-center/application-notes/optics/polarizer-selection-guide/
[40] C. M. Morris, R. V. Aguilar, A. V. Stier, and N. P. Armitage, “Polarization modulation time-domain terahertz polarimetry,” Opt. Express. 20(11), 12303-12317 (2012).