| 研究生: |
楊德生 De-sheng Yang |
|---|---|
| 論文名稱: |
基於錐形光纖發展寬頻光源在同調反史托克拉曼散射的應用 The development of broadband light source based on tapered fiber for coherent anti-Stokes Raman scattering applications |
| 指導教授: |
戴朝義
Chao-yi Tai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 錐形光纖 、同調反史托克拉曼散射 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文從理論出發,透過光纖模態可以計算得到色散和非線性係數。再藉由非線性薛丁格方程式的模擬結果制定錐形光纖的規格,發現光纖直徑在 到 具有最寬的光譜。接著根據數值模擬所設計的參數來製作錐形光纖,且對錐形光纖與正常光纖作光學量測,可得知錐形光纖的光譜較正常光纖寬。說明對於光譜展寬,製作錐形光纖的有效性與必要性。最後並進一步嘗試應用在同調反史托克拉曼散射顯微術的架設。
Theoretically, dispersion and nonlinear coefficient can be calculated through fiber modes. To achieve appropriate spectral broadening, we determine the specifications of tapered fiber based on the numerical simulations of the NLS equation. The widest spectral width occurs when the diameter of the fiber lying between and . We fabricate the tapered fiber following the results of numerical simulations and compare the output spectrum of tapered fiber and that of a normal fiber. The width of output spectrum of tapered fiber is wider than normal fiber. This indicates that the tapered fiber is useful and essential for spectral broadening. Furthermore, we also apply the tapered fiber to the coherent anti-Stokes Raman scattering setup.
[1] R.Y. Tsien and A. Miyawak, Seeing the Machinery of Live Cells. Science, 1998. 280(5371): p. 1954-1955.
[2] W. Denk, J. Strickler, and W. Webb, Two-photon laser scanning fluorescence microscopy. Science, 1990. 248(4951): p. 73-76.
[3] G.J. Puppels, et al., Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature, 1990. 347(6290): p. 301-303.
[4] N.M. Sijtsema, et al., Confocal Direct Imaging Raman Microscope: Design and Applications in Biology. Applied Spectroscopy, 1998. 52(3): p. 348-355.
[5] C.V. Raman and K.S. Krishnan, A new type of secondary radiation, Discovery of Raman effect. Nature, 1928. 121: p. 501.
[6] P.D. Maker and R.W. Terhune, Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength. Physical Review, 1965. 137(3A): p. A801-A818.
[7] M.D. Duncan, J. Reintjes, and T.J. Manuccia, Scanning coherent anti-Stokes Raman microscope. Optics Letters, 1982. 7(8): p. 350-352.
[8] A. Zumbusch, G.R. Holtom, and X.S. Xie, Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering. Physical Review Letters, 1999. 82(20): p. 4142-4145.
[9] R.F. Begley, A.B. Harvey, and R.L. Byer, Coherent anti‐Stokes Raman spectroscopy. Applied Physics Letters, 1974. 25(7): p. 387-390.
[10] J.-x. Cheng, et al., An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity. The Journal of Physical Chemistry B, 2001. 105(7): p. 1277-1280.
[11] J.-X. Cheng, L.D. Book, and X.S. Xie, Polarization coherent anti-Stokes Raman scattering microscopy. Optics Letters, 2001. 26(17): p. 1341-1343.
[12] A. Volkmer, J.-X. Cheng, and X. Sunney Xie, Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy. Physical Review Letters, 2001. 87(2): p. 023901.
[13] J.L. Oudar, R.W. Smith, and Y.R. Shen, Polarization‐sensitive coherent anti‐Stokes Raman spectroscopy. Applied Physics Letters, 1979. 34(11): p. 758-760.
[14] J.C. Knight, et al., All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996. 21(19): p. 1547-1549.
[15] P. Dumais, et al., Enhanced self-phase modulation in tapered fibers. Optics Letters, 1993. 18(23): p. 1996-1998.
[16] J.K. Ranka, R.S. Windeler, and A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000. 25(1): p. 25-27.
[17] H.N. Paulsen, et al., Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Optics Letters, 2003. 28(13): p. 1123-1125.
[18] A.F. Pegoraro, et al., All-fiber CARS microscopy of live cells. Optics Express, 2009. 17(23): p. 20700-20706.
[19] R.A. Fisher and W. Bischel, The role of linear dispersion in plane‐wave self‐phase modulation. Applied Physics Letters, 1973. 23(12): p. 661-663.
[20] R.A. Fisher and W.K. Bischel, Numerical studies of the interplay between self‐phase modulation and dispersion for intense plane‐wave laser pulses. Journal of Applied Physics, 1975. 46(11): p. 4921-4934.
[21] G.M. Muslu and H.A. Erbay, Higher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation. Mathematics and Computers in Simulation, 2005. 67(6): p. 581-595.
[22] G.H. Weiss and A.A. Maradudin, The Baker‐Hausdorff Formula and a Problem in Crystal Physics. Journal of Mathematical Physics, 1962. 3(4): p. 771-777.
[23] O.V. Sinkin, et al., Optimization of the Split-Step Fourier Method in Modeling Optical-Fiber Communications Systems. Journal of Lightwave Technology, 2003. 21(1): p. 61.
[24] I.H. Malitson, Interspecimen Comparison of the Refractive Index of Fused Silica. Journal of the Optical Society of America, 1965. 55(10): p. 1205-1208.
[25] T.A. Birks, W.J. Wadsworth, and P.S.J. Russell, Supercontinuum generation in tapered fibers. Optics Letters, 2000. 25(19): p. 1415-1417.
[26] M. Foster, K. Moll, and A. Gaeta, Optimal waveguide dimensions for nonlinear interactions. Optics Express, 2004. 12(13): p. 2880-2887.