| 研究生: |
陳妙美 Tran Dieu My |
|---|---|
| 論文名稱: |
退火Ge薄膜的性能研究 Research on the properties of the annealed Ge thin films |
| 指導教授: |
陳昇暉
Chen, Sheng-Hui |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 虛擬鍺基板 、III-V族太陽能電池 、射頻磁控濺射 、迴圈熱退火 |
| 外文關鍵詞: | Virtual Germanium Substrate, III-V solar cell, RF Magnetron Sputtering, Cycle Thermal annealing |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於高效率III-V族太陽能電池的性能優越,近來受到廣泛注意。而晶格匹配的基板在太陽能電池製造中被認為是非常重要的。本研究在Si基板上成長Ge磊晶薄膜,作為製造高效率III-V族太陽能電池的虛擬鍺基板。我們使用的兩種主要方法是射頻磁控濺射和迴圈熱退火。在Si基板上利用射頻磁控濺射沉積鍺磊晶薄膜與其它技術相比具有成本低的優點,也是一種安全的製造方法。為了降低螺紋狀差排密度(TDD)和減少缺陷,在Si表面沉積Ge磊晶薄膜後進行迴圈熱退火。由於Si和Ge在熱膨脹係數上的不匹配,退火後Ge薄膜的平面應力由壓縮變為拉伸。然後,我們將利用X光繞射(XRD)、拉曼光譜、原子力顯微鏡(AFM)和掃描電子顯微鏡(SEM)分析迴圈退火的影響以及TDD的還原機制。
III-V solar cells are becoming more widely known for their high efficiency and performance. Hence, a lattice - matched substrate is considered very important in their manufacturing. In this thesis, Ge epitaxial films on Si substrates are used as a virtual Ge substrate to manufacture highly efficient III-V solar cells. The two main methods employed are RF magnetron sputtering and cyclic thermal annealing. Ge epitaxial film will be deposited on the Si substrate via the RF magnetron sputtering method due to its lower cost and safety. Cycle thermal annealing is carried out after the deposition of Ge film on Si with the aim of reducing the threading dislocation density (TDD) and defects. Due to the mismatch between Si and Ge in terms of the thermal expansion coefficient, after the annealing process, the plane strain of the Ge film will be changed from compression to tension. We analyzed the effects of the cycle annealing as well as the TDD reduction mechanism via X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM).
[1] Fleischer, M. (1954). ‘‘The Abundence and Distribution of the Chemical Elements in the Earth's Crust’’, Journal of Chemistry Education, 31, p. 446.
[2] Liu, J. (2014). ‘‘Monolithically Integrated Ge-on-Si Active Photonics’’. Photonics 2014, 1 (3), pp. 162-197.
[3] Stillman, G. E., Robbins, V. M. & Tabatabaie, N. (1984). ‘‘III-V Compound Semiconductor Devices: Optical Detectors’’, IEEE Transactions on Electron Devices, 31 (11).
[4] Lee, M. L., Leitz, C. W., Cheng, Z., Pitera, A. J., Langdo, T., Currie, M. T., Taraschi, G., Fitzgerald, E. A. & Antoniadis, D. A. (2001). ‘‘Strained Ge channel p-type metal–oxide–semiconductor field-effect transistors grown on Si1-xGex/Si virtual substrates’’, Appl. Phys. Lett., 79 (20), pp. 3344- 3346.
[5] Cooke, M. (2014). ‘‘Pseudo-direct gaps for efficient light emission and absorption’’, Semiconductor Today.
[6] W. J. Varhue, J. M. Carulli, G. G. Peterson, and J. A. Miller. (1991). ‘‘Low temperature epitaxial growth of Ge using electron-cyclotron-resonance plasma-assisted chemical vapor deposition’’. J. Appl. Phys 71, 1949 (1992).
[7] Fama, S., Colace, L., Masini, G., Assanto, G. & Luan, H. C. (2002). ‘‘High performance germanium-onsilicon detectors for optical communications’’, Appl. Phys. Lett., 81 (4), pp. 586-588.
[8] Alharthi, B. S. (2018). Growth and Characterization of Silicon-Germanium-Tin Semiconductors for Future Nanophotonics Devices, ScholarWorks@UARK, scholarworks. Uark.edu/etd/3012/.
[9] Eaglesham, D. J. & Cerullo, M. (1990). ‘‘Dislocation-Free Stranski-Krastanow Growth of Ge on Si(100)’’, Phys. Rev. Lett., 64(16), pp. 1943 – 1950.
[10] Michel, J., Liu, J. & Kimerling, L. C. (2010). ‘‘High-performance Ge-on-Si photodetectors’’, Nat. Photonics 4, 527.
[11] Liu, Z.,Hao, X., Ho-Ballie, A., Tsao, C. Y. & Green, M. A. (2014). ‘‘Cyclic Thermal Annealing on Ge/Si(100) Epitaxial Films Grown by Magnetron Sputtering’’. Thin Solid Films, 574 (2015), pp. 99-102.
[12] Haller, E. E. (2006). ‘‘Germanium: From Its Discovery to SiGe Devices. Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory’’, Berkeley, pp. 1-45.
[13] Curtolo, D. C., Friedrich, S. & Friedrich, B. (2017). ‘‘High Purity Germanium, a Review on Principle Theories and Technical Production Methodologies’’. Journal of Crystallization Process and Technology, 7 (4), pp. 65-84.
[14] Kasper, E., Oehme, M., Arguirov, T., Werner, J., Kittler,M. & Schulze, J. (2011). ‘‘Room Temperature Direct Band Gap Emission from Ge p-i-n Heterojunction Photodiodes’’. Advances in OptoElectronics, 2012, pp. 1-4.
[15] Paige, E. G. S. (1960). ‘‘The Drift Mobility of Electrons and Holes in Germanium at Low Temperature’’. Pergamon Press, 16, pp. 207-219.
[16] Sze, S. M. & Kwok, K. Ng. (2006). Physics of Semiconductor Devices, New York, Wiley Interscience.
[17] Dabrowski & Jarek. (2000). Silicon Surface and Formation of Interfaces: Basic Science in the Industrial World, Singapore, River Edge, NJ: World Scientific.
[18] Anderson, P. M., Hirth, J. P. & Lothe, J. (2017). Theory of Dislocations, New York, NY: Cambridge University Press.
[19] Hull, D. & Bacon, D. J. (2011). Introduction to Dislocations, USA, Elsevier Ltd.
[20] Callister, William D. Jr. (2005). Fundamentals of Materials Science and Engineering, John Wiley & Sons, Inc. Danvers, MA.
[21] Reed-Hill, R. E., Abbaschian, L. & Abbaschian, R. (1994). Physical Metallurgy Principles, Boston: PWS Publishing Company.
[22] Shackelford, J. F. (2009). Introduction to Materials Science for Engineers (7th ed), Upper Saddle River, Prentice Hall.
[23] Seshan, K. (2012). Handbook of Thin Film Deposition. William Andrew.
[24] Schmitz, G. J. & Prahl, U. (2017). Handbook of Software Solutions for ICME, Germany, Wiley-VCH.
[25] Abegunde, O. O., Akinlabi, E. T., Oladijo, O. P., Akinlabi, S. & Ude, A. U. (2019). ‘‘Overview of Thin Film Deposition Techniques’’. AIMS Materials Science, 6 (2), pp. 174-199.
[26] Mattox, D. M. (2010). Handbook of Physical Vapor Deposition (PVD) processing, William Andrew.
[27] Mahan, J. E. (2000). Physical vapor deposition of thin films, Wiley-VCH.
[28] Helmersson, U., Lattemann, M., Bohlmark, J., et al. (2006). ‘‘Review Ionized physical vapor deposition (IPVD): A review of technology and applications’’. Thin Solid Films, 513, pp. 1–24.
[29] Seshan, K. (2001). Handbook of thin-film deposition processes and Techniques, Principles, Methods, Equipment and Applications, Noyes Publications/William Andrew Publishing.
[30] Baptista, A., Silva, F., Porteiro, J., Míguez, J. & Pinto, G. (2018). ‘‘Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands’’. Coatings, 8 (402), pp. 1-22.
[31] Simon, A. H. (2012). Handbook of Thin Film Deposition, NY, IBM Microelectronics.
[32] Brauer, G. (2014). ‘‘Magnetron Sputtering’’. Comprehensive Materials Processing, 4, pp. 57-73.
[33] Wei, Q. (2009). Surface Modification of Textiles, England, Oxford: Woodhead Publishing in association with the Textile Institute
[34] Torng, C., Sivertsen, J. M., Judy, J. H., et al. (1990). ‘‘Structure and Bonding Studies of The C: N Thin Films Produced by RF Sputtering Method’’. J Mater Res, 5, pp. 2490–2496.
[35] Kelly, P. J., Arnell, R. D. (2000). ‘‘Magnetron sputtering: a review of recent developments and applications’’. Vacuum, 56, pp. 159–172.
[36] Constantin, D. G., Apreutesei, M., Arvinte, R., et al. (2011). ‘‘Magnetron Sputtering Technique Used for Coatings Deposition; Technologies and Applications’’. RECENT, 12, 1(31),pp. 29-33.
[37] Markovich, D., et al. (1997). ‘‘Effect of Stresses in Annealing a Copper Wire on Its Technological Properties’’. Metal Science and Heat Treatment, 39 (3), pp. 127-129.
[38] Askeland, D. R. & Wendelin, J. W. (2016). The science and engineering of materials. Cengage Learning.
[39] Shackelford, J. F. (2009). Introduction to Materials Science for Engineers. Pearson Prentice Hall.
[40] Dossett, J. L., Boyer, H. E. (2006). Practical heat treating. ASM International. pp. 17-22.
[41] Totten, G. E. (2006). Steel Heat Treatment: Metallurgy and Technologies, New York, CRC Press.
[42] Butt, H. J., Cappella, B. & Kappl, M. (2005). ‘‘Force Measurements with The Atomic Force Microscope: Technique, Interpretation and Applications’’. Surface Science Reports, 59, pp. 1-152.
[43] Kwon, J., Hong, J., Kim, Y. S., Lee, D. Y., Lee, K., Lee, S. M. & Park, S. I. (2003). ‘‘Atomic force microscope with improved scan accuracy, scan speed, and optical vision’’. Review of scientific instrument, 74 (10), pp. 4378-4383.
[44] Kyeyune, B. (2017). Atomic Force Microscopy. Tanzania: African Institute for Mathematical Sciences.
[45] Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. (2009). ‘‘The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy’’. Science, 325 (5944), pp. 1110–1114.
[46] Singh, R. (2002). ‘‘C. V. Raman and the Discovery of the Raman Effect’’. Physics in Perspective, 4, pp. 399-420.
[47] Gardiner, D. J. & Graves, P. R. (1989). Practical Raman Spectroscopy. Berlin: Springer-Verlag.
[48] Schmid, T. & Dariz, P. (2019). ‘‘Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions’’. Heritage, 2 (2), pp. 1662–1683.
[49] Baker, M. J., Hughes, C. S. & Hollywood, K. A. (2016). ‘‘Biophotonics. Vibrational Spectroscopic Diagnostics’’. IOP Science, pp. 1-13.
[50] Sharma, R., Bisen, D. P., Shukla, U. & Sharma, B. G. (2012). ‘‘X-ray Diffraction. A Powerful Method of Characterizing Nanomaterials’’. Recent Research in Science and Technology, 4 (8), pp. 77-79.
[51] Hummel, J. M. (2016). X-ray Diffraction.
[52] Seeck, O. H. & Murphy, B. M. (2014). X-Ray Diffraction. Modern Experimental Techniques. New York: Taylor & Francis.
[53] Lin, T. H. (2015). Near Infrared Crystal Germanium Film Photodetector, Taiwan, National Central University.
[54] Li, Y. T. (2019). The Grown Mechanism of Ge Islands by RF Magnetron Sputtering Systems, Taiwan, National Central University
[55] Stokes, D. J. (2008). Principles and Practice of Variable Pressure Environmental Scanning Electron Microscopy (VP-ESEM). Chichester: John Wiley & Sons.
[56] Goldstein, G. I.; Newbury, D. E., Echlin, P., Joy, D. C., Fiori, C. & Lifshin, E. (1981). Scanning electron microscopy and x-ray microanalysis. New York: Plenum Press.
[57] Zworykin V. A., Hillier J. & Snyder R. L. (1942). ‘‘A scanning electron microscope’’. ASTM Bull , 117, pp. 15–23.
[58] Chen, D., Xue, Z., Wei, X., Wang, G., Ye, L., Zhang, M., Wang, D. & Liu, S. (2014). ‘‘Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (100) by RPCVD’’. Appl. Surf. Sci., 299, pp.1-5.
[59] Sharafi, Z. A., Mohyeddine, S., Mohammed, S. O. & Kershi, R. M. (2014). ‘‘Structural and Optical Properties of Germanium Thin Films Prepared by the Vacuum Evaporation Technique’’. Physics Research International, 2014, pp. 1-7.
[60] Zhi, L., Bu-Wen, C., Ya-Ming, L., Chuan-Bo, L., Chun-Lai, X. & Qi-Ming, W. (2013). ‘‘Effects of high temperature rapid thermal annealing on Ge films grown on Si(001) substrate’’. Chin. Phys. B, 22 (11), pp. 1-4.