| 研究生: |
蕭銓宏 Chuan-Hung Hsiao |
|---|---|
| 論文名稱: |
應用自動車輛辨識技術於長隧道自動事件偵測 A Algorithm for Urban Tunnel Automatic Incident Detection with Automatic Vehicle Identification Technology |
| 指導教授: |
吳健生
Jiann-Sheng Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 自動事件偵測 、自動車輛辨識 、長隧道 |
| 外文關鍵詞: | automatic vehicle identification, long tunnel, automatic incident detection |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於長隧道密閉式的空間特性,一旦事故於隧道內發生,極易釀成二次事故。目前國內隧道事故偵測方式,是先由用路人回報,再由附近的閉路電視確認是否真的有事故發生,此法雖然能夠準確的得知事故發生的地點及事故型態,但耗時甚鉅,在這時間內可能已造成相當大的人員及財務損失,因此,發展有效的長隧道事件偵測系統是不可或缺的。
本研究的目的在於發展一套迅速且準確的隧道自動事件偵測演算法,用來提供交通管理者事件發生時的相關資訊,讓事件所造成的損失減到最小。本研究利用自動車輛辨識技術獲得微觀交通參數資料,構建微觀車流參數法,再以車流模擬的方式模擬於長隧道出入口各架設一座影像式自動車輛辨識系統,以此方式獲得構建演算法微觀車流參數,最後以三個績效評估因子:偵測率、平均偵測時間及誤報率來評估隧道自動事件偵測演算法。
經由一系列的評估分析,整理得本研究所提出的事件偵測演算法其偵測率於高中低流量狀態下均超過90%,誤報率均小於4%,平均偵測時間約為100秒。本研究所提出的事件偵測演算法具有高偵測率、偵測時間短的優異表現,在誤報率方面也屬可接受的表現,因此本研究的結果確可提供相關單位研究或建置系統參考用。
Because of the characteristic of the long airtight type of tunnel, once an incident occurs in the tunnel, a secondary incident can be induced further. The procedure of tunnel incident detection are: (1)emergency call from the passerby, (2)and then confirm it by nearby closed-circuit television. Using this method we can detect the location and type of incident, but this procedure isn’t effective because it take too much time to detect and may result in great loss and injury. Therefore, it is indispensable to develop a long tunnel incident detection system.
This research focus on developing a rapid and correct automatic tunnel incident detection algorithm to minimize the damages from incidents. We use microscopic traffic parameters based on automatic vehicle identification technology to construct this tunnel incident detection algorithm. Because of automatic vehicle identification facility not being constructed in the tunnel yet, this research verifies the performance of the incident detection algorithm by utilizing traffic simulation. Then we evaluate the performance with three factor, including detection rate, mean detective time, and false alarm rate.
After series analysis of the incident algorithm, it is concluded that the detection rate is more than 90%, false alarm rate is less than 4%, and mean detective time is approximately 100 second. It is shown that performance of this research is superior in detection rate and mean detective time. And the performance in false alarm rate is also acceptable. Therefore, the algorithm developed by this research can be provided to other researches and relative associations for reference.
1. 王秀帆,「應用灰色預測於高速公路事件自動偵測之研究」,碩士論文,國立中央大學土木工程研究所,民國92年6月
2. 王政彥,「應用自動車輛辨識技術於高速公路事件自動偵測」,碩士論文,國立中央大學土木工程研究所,民國93年6月
3. 朱榮祥,「高速公路意外事件自動偵測演算法」,中華民國運輸學會第五屆論文集,民國79年7月
4. 李季森,「應用探測車法預測高速公路旅行時間」,碩士論文,國立中央大學土木工程研究所,民國91年6月
5. 吳健生、周健捷,「公路隧道安全設施準則研訂」,交通部台灣區國道新建工程局 (1998)。
6. 吳健生、楊冠雄,「公路隧道機電及交通監控整合研究」,交通部台灣區國道新建工程局 (1995)。
7. 周義華、陳天賜,「混合車流模擬方法之初步研究」中國工程學刊,第六卷,第二期,第65-71頁,民國72年
8. 侯鈞元,「應用羅吉特模式於市區道路事故偵測系統」,碩士論文,國立成功大學交通管理科學研究所,民國91年
9. 孫瑀、許敦淵,「Citilog隧道自動事件偵測系統」,國立中央警察大學研討會,民國94年
10. 國道高速公路局,「八十九年高速公路年報」,民國90年
11. 曾信忠,「模糊預測應用於高速公路事件自動偵測之研究」,碩士論文,國立中央大學土木工程研究所,民國82年6月
12. 黃振賢,「高速公路事件自動偵測方法之研究」,碩士論文,國立中央大學土木工程研究所,民國81年6月
13. 黃裕文,「高速公路施工路段旅行時間預測之研究」,碩士論文,國立中央大學土木工程研究所,民國92年6月
14. 葉源祥,「高速公路事件偵測之微觀車流參數法」,碩士論文,國立台灣大學土木工程研究所,民國84年6月
15. 張修榕,「高速公路旅行時間預測之研究」,碩士論文,國立中央大學土木工程研究所,民國90年6月
16. 張慶麟,「應用自動車輛辨識預測高速公路路段旅行時間」,碩士論文,國立中央大學土木工程研究所,民國92年6月
17. 簡賢文,「國道東部公路緊急應變計畫及標準作業程序建置」,中華顧問工程司,民國92年
18. 魏健宏、黃國平、陳昭宏,「應用人工神經網路發展高速公路意外事件自動偵測模式」,運輸計畫季刊,第二十五卷,第二期,第209-234頁,民國85年
19. 蘇志強,「影像式事件偵測於隧道監控之應用」,長隧道交通管理暨緊急救援研討會,民國95年5月
20. Ahmed, S.A., and Cook, A.R., ‘‘Time series models for freeway incident detection,’’ ASCE Journal of Transportation Engineering, Vol. 106, No.6, pp.731-745 (1980).
21. Ahmed, S.A., and Cook, A.R., ‘‘Application of time series analysis techniques to freeway incident detection,’’ TRR 841, pp.19-21 (1982).
22. Ahmed, S.A., and Cook, A.R., ‘‘Discrete dynamic models for freeway incident systems,’’ Transportation planning and technology, Vol. 7, pp.231-242 (1982).
23. Bruce hellinga, and Geoff knapp, ‘‘Automatic freeway incident detection using travel time data from AVI equipped vehicles,’’ Proc., 6th world congress on intelligent transporationt systems, Toronto, Canada (1999).
24. Bruce hellinga, and Geoff knapp, ‘‘Automatic vehicle identification technology-based freeway incident detection,’’ TRR 1727, pp.142-153(2000).
25. Dudek, C.L., Messer, C.J., and Nuekles N.B., ‘‘Incident detection on urban freeway,’’ TRR 495, pp.12-24 (1974).
26. F. Busch, A.Ghio, “Automatic incident detection on motorways by fuzzy logic,” Siemens AG (1994).
27. George Lunt, and Wilson, R.E., ‘‘New data sets and improved models of highway traffic,’’ University of Bristol (2002).
28. Haas, C.T., and Hani Mahmassani, ‘‘Evaluation of Incident Detection Methodologies, ’’ Austin (1999).
29. Han Reijmers, “Automatic incident detection,” Trafffic Guidance Systems (2005).
30. Hsiao, C.H., Lin, C.T., and Michael Cassidy, “Application of fuzzy logic and neural networks to automatically detect freeway traffic incidents,” Journal of Transportation Engineering, Vol. 120, Issue 5, pp.753-772(1994).
31. Jerome Geoffray, Chrstian Bouteloup, and Ammar Rifai, ‘‘Automatic Incident detection in urban tunnels for light vehicles only, ’’ Proc., 2nd international conference on safety in road and rail tunnels, pp.397-404(1995).
32. Khoury, J.A., Haas, C.T., Hani Mahmassani, Haitham Logman, and Tom Rioux, ‘‘Performance comparison of automatic vehicle identification and inductive loop traffic detectors for incident detection,’’ Journal of Transportation Engineering, Vol. 129, No.6, pp.600-607 (2003).
33. Kyriacos, C.M., Tom Batz, and Peter Dwyer, ‘‘Evaluation of the TRANSCOM’s system for managing incidents and traffic (TRANSMIT),’’ IEEE Transaction on intelligent transportation systems, Vol. 1, No.1, pp.15-30 (2000).
34. Levin, M., Krause, G.M., ‘‘Incident detection algorithms part 1:off-line evaluation,’’ TRR 722, pp.49-58 (1979).
35. Levin, M., Krause, G.M., ‘‘Incident detection:a Bayesian approach,’’ TRR 682, pp.52-58 (1978).
36. Levin, M., Krause, G.M., ‘‘A probabilistic approach to incident detection on urban freeway,’’ Traffic Engineering & Control, Vol. 20, No.3, pp.107-109 (1979).
37. Maxwell, R.R., Parsons Brinckerhoff, and Wintermute, J.C., ‘‘Low traffic Volume incident detection system Hanging Lake tunnel,’’ Proc., 1st international conference on tunnel control and communication, pp.339-348.
38. Michalopoulos, P.G., ‘‘Vehicle detection through video image processing:the autoscope system,’’ IEEE transaction on vehicular technology, Vol. 40, No.1, pp.21-29 (1991).
39. Neil Hoose, ‘‘Tunnel incident monitoring using the IMPACTS video analysis system,’’ Proc., 1st international conference on tunnel control and communication, pp.349-364.
40. Nitin Agarwal, Nicholas Andrisevic, Kiran Vuppla, and Stachowicz M. S., ‘‘Vehicle detecting and tracking in video for incident detection, ’’ Minnesota (2003).
41. Payne, H.J., and Tignor, S.C., ‘‘Freeway incident detection algorithms based on decision trees with state,’’ TRR 682, pp.30-37 (1978).
42. S Dunstan, and RH Lees, ‘‘IDRIS- A new approach to incident detection,’’ Proc., 1st international conference on tunnel control and communication, pp.383-392.
43. Sheu, J.B., Ritchie, S.G., ‘‘A New methodology for incident detection and characterization on surface streets,’’ Transportation Research, part c 6, pp.315-335 (1998).