| 研究生: |
吳柏融 Bo-Rong Wu |
|---|---|
| 論文名稱: |
蒸氣相成長金屬有機框架材料合成 Vapor Phase Synthesis of Metal-Organic Frameworks (MOFs) |
| 指導教授: |
張博凱
Bor Kae Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 蒸氣相 、金屬有機框架 、MIL-53 (Al) 、溶熱法 、傳統電器加熱 、微波輔助加熱 、氧化鋁基材 |
| 外文關鍵詞: | Vapor phase, Metal-organic framework, MIL-53 (Al), Solvothermal, Conventional electric, Microwave-assisted, Alumina support |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用傳統電器(Conventional Electric)及微波輔助(Microwave-assisted)方式合成金屬有機框架材料(MOFs),並嘗試在前驅溶液的蒸氣相中合成MIL-53 (Al)晶體於氧化鋁基材(α-Al2O3)的表面上形成膜(Membrane)或直接將前驅物加熱為蒸氣狀態,進而反應並沈積薄膜在基板,有別於以往傳統製備無機氣體滲透膜的製程是將基材放置於前驅溶液的液相中成長膜及化學氣相沈積法,這是相對成本較低且在蒸氣相合成金屬有機框架薄膜的方法。
在本研究中,我們設計了四種可以在蒸氣相成長膜的方法,並且透過參數的改變及製程上的設計進而提高膜的覆蓋率及均勻性。然而我們也發現,在液相及蒸氣相中以傳統烘箱及微波合成金屬有機框架膜皆有不同的表面形貌產生,大致上可分為塊狀及棒狀。
X-射線繞射分析儀(X-ray diffraction, XRD)可用來驗證成長於基材上的的材料為何,並判斷MIL-53 (Al)是否成功成長於氧化鋁基材上。掃描式電子顯微鏡 (scanning electron microscopy, SEM)用來分析MIL-53 (Al)膜的表面形貌。氮氣吸附孔隙儀 (BET surface area measurement)分別對傳統電器合成的MIL-53 (Al)及微波輔助合成的MIL-53 (Al)量測比表面積,驗證不同合成方法對於材料的比表面積的影響。
In this study, conventional electric and microwave-assisted heating were used for metal-organic framework synthesis, and we attempted to grow MIL-53 (Al) membrane on α-Al2O3 via vapor processing. Different from conventional method which places α-Al2O3 in the liquid precursor solution for preparing inorganic gas separation membrane, these methods are inexpensive for membrane fabrication in the vapor phase condition.
In this research, we developed four methods for membrane synthesis in the vapor phase. The membrane coverage and uniformity were improved by adjusting the experimental process and parameters. In addition, membrane synthesis with different conditions resulted in different crystal morphologies, such as bulk-like and rod-like crystals. Namely, we could control the membrane morphology by synthetic methods and phases.
Material growing on α-Al2O3 was identified by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used for morphology analysis. Different surface area of MIL-53 (Al) synthesized by conventional electric and microwave-assisted heating was confirmed by BET surface area measurement.
1. Eddaoudi, M., D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O'Keeffe, and O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research, 2001. 34(4): p. 319-330.
2. Kim, J., B. Chen, T.M. Reineke, H. Li, M. Eddaoudi, D.B. Moler, M. O'Keeffe, and O.M. Yaghi, Assembly of Metal−Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures. Journal of the American Chemical Society, 2001. 123(34): p. 8239-8247.
3. Furukawa, H., N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, and O.M. Yaghi, Ultrahigh Porosity in Metal-Organic Frameworks. Science, 2010. 329(5990): p. 424.
4. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 673-674.
5. Nan, J., X. Dong, W. Wang, W. Jin, and N. Xu, Step-by-Step Seeding Procedure for Preparing HKUST-1 Membrane on Porous α-Alumina Support. Langmuir, 2011. 27(8): p. 4309-4312.
6. Kaye, S.S., A. Dailly, O.M. Yaghi, and J.R. Long, Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society, 2007. 129(46): p. 14176-14177.
7. Tai, S., W. Zhang, J. Zhang, G. Luo, Y. Jia, M. Deng, and Y. Ling, Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Microporous and Mesoporous Materials, 2016. 220: p. 148-154.
8. Usman, M., S. Mendiratta, S. Batjargal, G. Haider, M. Hayashi, N. Rao Gade, J.-W. Chen, Y.-F. Chen, and K.-L. Lu, Semiconductor Behavior of a Three-Dimensional Strontium-Based Metal–Organic Framework. ACS Applied Materials & Interfaces, 2015. 7(41): p. 22767-22774.
9. Haque, E., N.A. Khan, J.H. Park, and S.H. Jhung, Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chemistry, 2010. 16(3): p. 1046-52.
10. Pan, Y., D. Heryadi, F. Zhou, L. Zhao, G. Lestari, H. Su, and Z. Lai, Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm, 2011. 13(23): p. 6937-6940.
11. McKinstry, C., R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan, and J. Sefcik, Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chemical Engineering Journal, 2016. 285: p. 718-725.
12. Zhang, F., X. Zou, X. Gao, S. Fan, F. Sun, H. Ren, and G. Zhu, Hydrogen Selective NH2-MIL-53(Al) MOF Membranes with High Permeability. Advanced Functional Materials, 2012. 22(17): p. 3583-3590.
13. Yeo, Z.Y., S.-P. Chai, P.W. Zhu, and A.R. Mohamed, An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances. RSC Advances, 2014. 4(97): p. 54322-54334.
14. Qiu, S., M. Xue, and G. Zhu, Metal-organic framework membranes: from synthesis to separation application. Chemical Society Reviews, 2014. 43(16): p. 6116-6140.
15. Shah, M., M.C. McCarthy, S. Sachdeva, A.K. Lee, and H.-K. Jeong, Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges. Industrial & Engineering Chemistry Research, 2012. 51(5): p. 2179-2199.
16. Li, L., J. Yao, R. Chen, L. He, K. Wang, and H. Wang, Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis. Microporous and Mesoporous Materials, 2013. 168: p. 15-18.
17. Zhang, W., Experimental Investigation on Gas Separation Using Porous Membranes, in Technischen Universität Berlin. 2011.
18. Zhu, X., H. Wang, and Y.S. Lin, Effect of the Membrane Quality on Gas Permeation and Chemical Vapor Deposition Modification of MFI-Type Zeolite Membranes. Industrial & Engineering Chemistry Research, 2010. 49(20): p. 10026-10033.
19. Lu, G.Q., J.C. Diniz da Costa, M. Duke, S. Giessler, R. Socolow, R.H. Williams, and T. Kreutz, Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 2007. 314(2): p. 589-603.
20. Zhang, W., M. Gaggl, G.J.G. Gluth, and F. Behrendt, Gas separation using porous cement membrane. Journal of Environmental Sciences, 2014. 26(1): p. 140-146.
21. Tanh Jeazet, H.B., C. Staudt, and C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 2012. 41(46): p. 14003-14027.
22. Chung, T.-S., L.Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007. 32(4): p. 483-507.
23. Zhu, Y., Q. Liu, and A. Huang, Microwave synthesis of tubular zeolitic imidazolate framework ZIF-8 membranes for CO2/CH4 separation. Separation Science and Technology, 2016. 51(5): p. 883-891.
24. 賴君義, 專題報導-薄膜科技. 臺北市 : 行政院國家科學委員會, 2008. 科學發展 429期: p. 32-37.
25. Yoo, Y. and H.-K. Jeong, Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chemical Communications, 2008(21): p. 2441-2443.
26. Gascon, J., S. Aguado, and F. Kapteijn, Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous and Mesoporous Materials, 2008. 113(1–3): p. 132-138.
27. Ameloot, R., L. Stappers, J. Fransaer, L. Alaerts, B.F. Sels, and D.E. De Vos, Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials, 2009. 21(13): p. 2580-2582.
28. Arnold, M., P. Kortunov, D.J. Jones, Y. Nedellec, J. Kärger, and J. Caro, Oriented Crystallisation on Supports and Anisotropic Mass Transport of the Metal-Organic Framework Manganese Formate. European Journal of Inorganic Chemistry, 2007. 2007(1): p. 60-64.
29. Lee, D.-J., Q. Li, H. Kim, and K. Lee, Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials, 2012. 163: p. 169-177.
30. Ameloot, R., E. Gobechiya, H. Uji-i, J.A. Martens, J. Hofkens, L. Alaerts, B.F. Sels, and D.E. De Vos, Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials, 2010. 22(24): p. 2685-2688.
31. McCarthy, M.C., V. Varela-Guerrero, G.V. Barnett, and H.-K. Jeong, Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures. Langmuir, 2010. 26(18): p. 14636-14641.
32. Liu, Y., J.-H. Her, A. Dailly, A.J. Ramirez-Cuesta, D.A. Neumann, and C.M. Brown, Reversible Structural Transition in MIL-53 with Large Temperature Hysteresis. Journal of the American Chemical Society, 2008. 130(35): p. 11813-11818.
33. Beurroies, I., M. Boulhout, P.L. Llewellyn, B. Kuchta, G. Ferey, C. Serre, and R. Denoyel, Using pressure to provoke the structural transition of metal-organic frameworks. Angew Chem Int Ed Engl, 2010. 49(41): p. 7526-9.
34. Mulder, F.M., B. Assfour, J. Huot, T.J. Dingemans, M. Wagemaker, and A.J. Ramirez-Cuesta, Hydrogen in the Metal−Organic Framework Cr MIL-53. The Journal of Physical Chemistry C, 2010. 114(23): p. 10648-10655.
35. Serre, C., S. Bourrelly, A. Vimont, N.A. Ramsahye, G. Maurin, P.L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, and G. Férey, An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption. Advanced Materials, 2007. 19(17): p. 2246-2251.
36. Serre, C., F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër, and G. Férey, Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. Journal of the American Chemical Society, 2002. 124(45): p. 13519-13526.
37. Loiseau, T., C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, and G. Ferey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry, 2004. 10(6): p. 1373-82.
38. Qian, X., B. Yadian, R. Wu, Y. Long, K. Zhou, B. Zhu, and Y. Huang, Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. International Journal of Hydrogen Energy, 2013. 38(36): p. 16710-16715.
39. 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司, 2004: p. p.4.31-4.36.
40. Cohen, S.M., Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 970-1000.
41. Qiu, S. and G. Zhu, Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 2009. 253(23–24): p. 2891-2911.
42. Klinowski, J., F.A. Almeida Paz, P. Silva, and J. Rocha, Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions, 2011. 40(2): p. 321-330.
43. Hu, Y., X. Dong, J. Nan, W. Jin, X. Ren, N. Xu, and Y.M. Lee, Metal-organic framework membranes fabricated via reactive seeding. Chem Commun (Camb), 2011. 47(2): p. 737-9.
44. Kwon, H.T. and H.K. Jeong, Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem Commun (Camb), 2013. 49(37): p. 3854-6.
45. Lai, L.S., Y.F. Yeong, T.L. Chew, K.K. Lau, and M.S. Azmi, CO2 and CH4 gas permeation study via zeolitic imidazolate framework (ZIF)-8 membrane. Journal of Natural Gas Science and Engineering, 2016. 34: p. 509-519.
46. Stassen, I., D. De Vos, and R. Ameloot, Vapor-Phase Deposition and Modification of Metal–Organic Frameworks: State-of-the-Art and Future Directions. Chemistry – A European Journal, 2016. 22(41): p. 14452-14460.
47. Stassen, I., M. Styles, G. Grenci, H.V. Gorp, W. Vanderlinden, S.D. Feyter, P. Falcaro, D.D. Vos, P. Vereecken, and R. Ameloot, Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat Mater, 2016. 15(3): p. 304-310.
48. Shi, Q., Z. Chen, Z. Song, J. Li, and J. Dong, Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angewandte Chemie International Edition, 2011. 50(3): p. 672-675.
49. Ahmed, I., J. Jeon, N.A. Khan, and S.H. Jhung, Synthesis of a Metal–Organic Framework, Iron-Benezenetricarboxylate, from Dry Gels in the Absence of Acid and Salt. Crystal Growth & Design, 2012. 12(12): p. 5878-5881.
50. Kim, J., Y.-R. Lee, and W.-S. Ahn, Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: high surface area and high yield synthesis with minimum purification. Chemical Communications, 2013. 49(69): p. 7647-7649.
51. Das, A.K., R.S. Vemuri, I. Kutnyakov, B.P. McGrail, and R.K. Motkuri, An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance. Scientific Reports, 2016. 6: p. 28050.