| 研究生: |
江仕傑 Shih-Jie Chiang |
|---|---|
| 論文名稱: |
視訊監控物聯網架構的人臉辨識系統 The Internet of Things Framework toward Face Recognition System |
| 指導教授: | 陳慶瀚 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系在職專班 Executive Master of Computer Science & Information Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 物聯網 、人臉偵測 、邊緣計算 、人臉辨識 、深度學習 |
| 外文關鍵詞: | Internet of Things, Face Detection, Edge Computing, Face Recognition, Deep Learning |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人臉辨識應用,經常都在高性能主機的伺服器上執行,但在雲端伺服器上,無法滿足即時性和可靠性需求。
本研究提出一個智慧型視訊監控物聯網架構,對此,應用裝置端是低硬體資源的攝影機,實作嵌入式人臉偵測;閘道器端是邊緣計算(edge computing)伺服器,執行深度學習人臉辨識。而雲端服務是一個Web界面,監控人機界面,使用者可由遠端,進行設定與監控目前影像狀況。
實驗驗證結果顯示,攝影機端能快速偵測,並擷取人臉影像,透過物聯網,傳至閘道器,執行深度學習,實現高效率人臉辨識。一來,滿足即時人臉辨識的需求,二來,減少網路頻寬的負擔。透過此研究,提高視訊監控物聯網系統整體效能,進而使物聯網時代快速推動。
Face recognition application can execute in the server of high-performance mainframe constantly, yet it cannot meet the requirements of instantaneity and reliability in the cloud server.
This thesis aims to investigate the Internet of Things (IoT) framework toward intelligent video surveillance (IVS). The device end is a hardware-constrained camera embedding with face detection system whereas the gateway end is an edge computing server, executing deep learning face recognition. Moreover, cloud service is a web interface embedding with human machine interface, thus the user can remote the setting and monitoring for the current image status.
The findings of this research shows that the camera end can quickly detect and capture the face image to the gateway end in virtue of the IoT. It executes the deep learning and achieves high efficiency technology regarding face recognition. For one thing, IVS can meet the demand of real time face recognition. For the other, it can lighten the burden of network bandwidth. I believe that the findings from my thesis can elevate the overall effectiveness of IVS, and then open up a new era for the IoT.
[1] G. Lorraine, F. Nacerodien, “An Assessment of Closed Circuit Television Surveillance with Referen” IEE Proceedings - Vision, Image and Signal Processing, vol. 152, Issue 5, pp 192-204, 09 May 2005.
[2] Eric D. Daniel ,C. Denis Mee , Mark H. Clark, " Digital Video Recording, " in Magnetic Recording :The First 100 Years ,1, Wiley-IEEE Press,ch14 ,pp. 201-220, 1999.
[3] R.B. Hawkins, "The network is the video camera-technologies for enabling embedded video in intelligent networks", Distributed Imaging (Ref. No. 1999/109), IEE European Workshop, 18-18 Nov. 1999.
[4] Open Network Video Interface Forum., Open Network Video Interface Forum. ONVIF Core Specification Ver.2.1.1, 2012[Online]. Available: http://www.onvif.org/specs/core/ONVIF-Core-Specification-v211.pdf
[5] Open Network Video Interface forum., Open Network Video Interface Forum Core Specification Ver.2.2.1, 2012 [Online]. Available: http://www.onvif.org/specs/core/ONVIF-Core-Specification-v221.pdf
[6] Physical Security Interoperability Alliance. Physical Security Interoperability Alliance System Protocol Ver.1.2., 2012 [Online]. Available: http://www.psialliance.org/register_form.html?file=PSIA-Service-Model_v1_2dFinal.pdf
[7] MA Mei, TANG Na,” Integration application scheme of video surveillance and environmental monitoring system in grid”, Electronic Design Engineering, vol.22, no.9, May2015.
[8] G. Medioni, I. Cohen, F. Bremond, S. Hongeng and R. Nevatia,” Event detection and analysis from video streams”, IEEE transations on Pattern Analysis and Machine Intelligence, vol. 23, no.8, pp 873-889, 2001.
[9] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. “Deep learning face representation by joint identification-verification”, In Proc. of the Advance in Neural Information Processing Systems (NIPS), pp1988-1996, 2014.
[10] Jingen Liu, Saad Ali, Mubarak Shah,” Recognizing Human Actions Using Multiple Features”, Computer Vision and Pattern Recgnition, “2008.CVPR, IEEE Conferemce on”, pp1-8, June 2008.
[11] Andreas Lanitis, Christopher J. Taylor, and Timothy F. Cootes, "Automatic face identification system using flexible appearance models," Image and vision computing, vol. 13, no.5, pp. 393-401, 1995.
[12] L. Acasandrei, and A. Barriga, "AMBA bus hardware accelerator IP for Viola-Jones face detection", IET Computers & Digital Techniques, vol. 7, no. 5, pp. 200-209, 2013.
[13] L. Essannouni, and D. Aboutajdine, "Correlation of robust Haar-like feature", Electronics Letters, vol. 47, no. 17, pp. 961-962, 2011.
[14] S. Wu, and H. Nagahashi, "Parameterized AdaBoost: Introducing a Parameter to Speed Up the Training of Real AdaBoost", IEEE Signal Processing Letters, vol. 21, no. 6, pp. 687-691, 2014.
[15] L. Bruzzone, and R. Cossu, "A multiple-cascade-classifier system for a robust and partially unsupervised updating of land-cover maps", IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 9, pp. 1984-1996, 2002.
[16] M.A. Turk and A.P. Pentland, "Face recognition using eigenfaces," presented at Computer Vision and Pattern Recognition, 1991.
[17] P.N Belhumeur, J.P. Hespanha, and D.J. Kriegman, "Eigenfaces vs. Fisherfaces: recognition using class specific linear projection," IEEE Transactions, Pattern Analysis and Machine Intelligence, 1997.
[18] M. Kirby and L. Sirovich,” Application of the Karhunen-Loeve procedure for the characterization of human faces”. IEEE Trans. Patt. Anal. Mach. Intell. 12, 1990.
[19] Z. Pan, R. Adams, and H. Bolouri, “Dimensionality reduction of face images using discrete cosine transforms for recognition.” submitted to IEEE Conference on Computer Vision and Pattern Recognition, 2000.
[20] J. Zhu, M.I. Vai and P.U. Mak, “Face Recognition Using 2D DCT with PCA", in the 4nd Chinese Conference on Biometric Recognition (Sinobiometrics’03) at Beijing, P. R. China, Dec. 7-8, 2003.
[21] G. Guo, S.Z. Li and K. Chan, “Face Recognition by Support Vector Machines”, Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000, pp. 196.
[22] M. Safari, M.T. Harandi and B.N. Araabi, “A SVM-based method for face recognition using a wavelet PCA representation of faces”, Image Processing. ICIP '04. 2004 International Conference on, vol. 2, pp.853 - 856, 24-27 Oct. 2004.
[23] V.V. Kohir and U.B. Desai, “Face recognition using a DCT-HMM approach,” in Proc. IEEE Workshop on Applications of Computer Vision (WACV’98), Princeton, NJ, pp.226–231,1998.
[24] Steve Lawrence, C. Lee Giles, Ah Chung Tsoi, and Andrew D. Back,” Face Recognition: A Convolutional Neural-Network Approach”, IEEE Transactions on Neural Networks, vol. 8, no. 1, pp.98-113, January 1997.
[25] Lawrence, S., C. L. Giles, A. C. Tsoi, and A. D. Back, "Face recognition: a convolutional neural-network approach," IEEE Trans. on Neural Networks, vol.8, no.1, pp.98-113, 1997.
[26] Warren S. McCulloch, Walter Pitts, "A logical calculus of the ideas immanent in nervous activity, " The bulletin of mathematical biophysics, vol. 5, Issue. 4, pp 115–133, December 1943.
[27] 曾柏耀, "嵌入式人臉偵測系統設計與實作," 國立中央大學資訊工程學系碩士論文, 2016.
[28] O, Peng, "A Fast-Integral Image Computing Hardware Architecture with High Power and Area Efficiency", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 75-79, 2014.
[29] LuigiDi Stefano , StefanoMattoccia and FedericoTombari ,” ZNCC-based template matching using bounded partial correlation”, Pattern Recognition Letters,Vol.26,pp.2129-2134, October 2005.
[30] R.W. Frischholz, U. Dieckmann,” BiolD: a multimodal biometric identification system”, Computer , vol.33,issue 2,Feb 2000.
[31] Terence Sim, Simon Baker, and Maan Bsat,” The CMU Pose, Illumination, and Expression (PIE) Database”, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, May2002
[32] T. Ojala, M. Pietikainen, T. Maenpaa,” Multiresolution gray-scale and rotation invariant texture classification with local binary patterns”, IEEE Transactions on Pattern Analysis and Machine Intelligence,vol .24,issue 7,Jul 2002.