跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林建樺
Jian-Hua Lin
論文名稱: 填充中孔洞分子篩於固態高分子電解質
Synthesis and detection of solid polymer electrolytes doped with mesoporous
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 90
語文別: 中文
論文頁數: 74
中文關鍵詞: 中孔洞分子篩固態高分子電解質固態核磁共振
外文關鍵詞: MCM-41, Mesoporous, Solid polyner electrolytes, SBA-15, Solid State NMR
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,對於聚氧化乙烯(PEO)的研究日益增加,而研究的重點多集中在利用不同的化合物或鹽類,以混摻的方式來改善聚氧化乙烯本身易結晶的缺陷,使得鋰離子自由運動的範圍增加,進而提高固態高分子電解質的離子導電度。本研究是將具有高表面積的中孔洞分子篩作為填充材料,以不同比例的混摻方式加入於固態高分子電解質系統之中,製成新型態的固態複合高分子電解質。
    在鑑定方面,利用X-ray粉末繞射儀(X-ray Powder Diffraction)來探討填充材料的特性及混摻對聚氧化乙烯結晶區塊的影響。另外藉由DSC的測量,有助於分析高分子電解質中高分子物性及填充材質對導電度的影響﹔交流阻抗分析法(AC-Impedance)分析在不同的溫度環境下的導電度,進而瞭解混摻比例對導電度的影響。再藉由固態核磁共振(Solid State NMR)的方法,來探討鋰離子在高分子電解質中的傳導機構與混摻不同比例之填充材料對鋰離子所造成的影響。經由實驗的結果分析可以得知,固態高分子電解質的結晶區塊確實會因為混摻加入填充材料而降低比例,而導電度亦會因為混摻加入填充材料而提高,其中則以重量百分比5%~8%間的混摻比例所測得的導電度較佳。


    The effect of addition of mesoporous SBA-15 materials to poly(ethylene oxide) (PEO) complexed with LiClO4 on cation transport properties has been explored by powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), AC impedance, and 7Li solid state NMR methods. The presence of SBA-15 generally increases the ionic conductivity, especially for the addition of 5 wt% of calcined SBA-15 to PEO:LiClO4 electrolyte. The enhancement in conductivity is directly correlated with increased Li diffusivity in the channels of SBA-15. Significantly enhanced conductivity has been obtained using SBA-15 as the filler in the PEO-based electrolytes as compared to that without SBA-15, showing that the addition of mesoporous structured materials in electrolytes is a promising method for improving the ion conductivity of polymer electrolytes. The enhancement in conductivity is directly correlated with increased Li diffusivity in the channels of SBA-15. The NMR results also demonstrate that the increased ionic conductivity is not attributable to a corresponding increase in polymer segmental motion, but most likely a weakening of the polyether-cation associated induced by the nanoparticles.

    中文摘要 I 目錄 II 圖目錄 IV 表目錄 VI 第一章 緒論 1 1-1 簡介 1 1-2 固態高分子電解質 4 1-3 中孔洞分子篩 9 1-4 複合材料 12 第二章 實驗技術與原理 15 2-1 實驗藥品 15 2-2 儀器設備 15 2-3 高分子電解質膜之製備 16 2-3-1中孔洞分子篩MCM-41之合成 16 2-3-2中孔洞分子篩MCM-41之修飾 16 2-3-3混摻Silylated-MCM-41之高分子電解質膜之製備 17 2-3-4混摻SBA-15之高分子電解質膜之製備 17 2-4 儀器分析原理及操作條件 18 2-4-1 微差掃描熱卡計(DSC) 18 2-4-2 掃描式電子顯微鏡(SEM) 19 2-4-3 X光粉末繞射(Powder X-ray diffraction, XRD) 20 2-4-4 交流阻抗(AC Impedance)分析 21 2-4-5 固態核磁共振儀(Solid state NMR) 24 第三章 結果與討論 29 3-1混摻MCM-41於PEO/Li+中之複合高分子電解質膜 29 3-1-1 Silylated-MCM-41之結構鑑定 29 3-1-1-1 X-ray粉末繞射(Powder X-ray Diffraction)圖譜分析 29 3-1-1-2 29Si MAS NMR分析 31 3-1-2 Silylated-MCM-41混摻PEO/Li+之複合高分子電解質膜 33 3-1-2-1 X-ray粉末繞射(Powder X-ray Diffraction)圖譜分析33 3-1-2-2 掃瞄式電子顯微鏡(SEM) 36 3-1-2-3 微分掃描熱卡計(DSC) 39 3-1-2-4 交流阻抗(AC Impedance)分析 41 3-1-2-5 固態核磁共振光譜(Solid State NMR)分析 44 7Li Linewidth Measurement 44 7Li T1 Measurement 48 3-2 混摻SBA-15於PEO/Li+中之複合高分子電解質膜 50 3-2-1 微分掃描熱卡計(DSC) 50 3-2-2 交流阻抗(AC Impedance)分析 52 3-2-3 固態核磁共振光譜(Solid State NMR)分析 55 7Li Linewidth Measurement 55 7Li T1 Measurement 57 第四章 結論 61 參考文獻 62

    1.洪傳獻,Chemistry 1999, 57, 175.
    2.Kim, C.S.; Oh, Seung M, Electrochim. Acta, 2000, 45, 2101.
    3.Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I.; J. Appl. Polym. Sci.,
    1982, 27, 4191.
    4.Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I.; J. Polym. Sci.: Polym.
    Phy. Ed., 1983, 21, 939.
    5.Abraham, K.M.; Alamgir, M.; J. Electrochem. Soc., 1990, 137, 1657.
    6.Xue, R.; Huang, H.; Menetrier, M.; Chen, L.; J. Power Sources, 1993, 43-44,
    431.
    7.Croce, F.; Gerace, F.; Pautzemberg, G.; Passerini, S.; Electrochim. Acta,
    1994, 39, 2187.
    8.Wright, P. V.; Fenton, D. E.; Parke, J. M.; Polymer, 1973, 14, 589.
    9.Armand, M.; Chabagno, J. M.; Duclot, M. Second International Meeting on Solid
    Electrolytes, St. Andrews, Scotland, Extended Abstracts (Sept. 1978)
    10.Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.;
    Rigaud, P.; Solid State Ionics, 1983, 11, 91.
    11.Shriver, D. F.; Ratner, M. A. Chem. Rev., 1988, 245, 4.
    12.楊家諭; 鄭程鴻; 邱永城; “鋰離子二次電池電解質介紹”, 工業材料110期 (85.2)
    13.Cheradame, H.; LeNest, J. F.; Gandini, A.; Leveque, M.; J Power sources,
    1985, 14, 27.
    14.M. G. Fiona,; “Solid Polymer Electrolyte: fundamentals and technological
    applications”, Chap. 6, 1997, p95~123.
    15.Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E.; Polymer,
    1984, 25, 1291.
    16.Kresge, C. T.; Leonowicz, M. E.; Roth,W. J.; Vartuli, J. C.; Beck, J. S.;
    Nature, 1992, 359, 710.
    17.Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.;
    Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.;
    Schlenker, J. L.; J. Am. Chem. Soc., 1992, 114, 10834.
    18.Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E.; Microporous Mater.;
    1993, 2 , 27.
    19.Kim, J. M.; Ryoo, R.; Bull. Korean Chem. Soc.
    20.Zhao, X. S.; Lu, G. Q.; J. Phys. Chem. B., 1998, 102, 1556.
    21.Rabek, J. F.; “Experimental Methods in Polymer Chemistry”, New York, 1980.
    22.陳力俊; “電子顯微鏡學發展沿革與未來趨勢”, 科儀新知, 第十九卷第二期 (86.10)
    23.Bruce, P.G.; “Polymer Electrolyte Reviews-1”, Edited by MacCallum, J. R.;
    Vincent, C.A.; Elsevier Applied Science Publisher LTD, London, Chap. 8, 1987.
    24.賈緒威; 科儀新知, 第二十一卷第六期 (88.10)
    25.Andrew, E. R.; Bradbury, A.; Eades, R. G.; Nature, 1958, 182, 1659.
    26.Loew, I. J.; Phys. Rev. Lett., 1959, 2, 285.
    27.Fukushiuma, E.; Roeder, S. B. W.; “Experimental Pulse NMR-A Nuts ans Bolts
    Approach”, Addision-Wesley, 1981.
    28.Abragam, A.; “The principles of Nuclear Magnetism”, Clarendon, Oxford,
    1961.
    29.Slichter, C. P.; “Principles of magnetic resonance”, 3nd Eds. Springer
    Verlag, New York, 1989.
    30.Bloembergen, N.; Purcell, E. M.; Pound, R. V.; Phys. Rev., 1948, 73, 679
    31.Simon T. C. Ng, Maria Forsyth, Douglas R. Macfarlane, Maria Garcia, Mark E.
    Smith and Johu H. Strange, Polymer, 1998, 39, 6261.
    32.Kresge, C. T.; Leonowicz, M. E.; Roth,W. J.; Vartuli, J. C.; Beck, J. S.;
    Nature, 1992, 359, 710.
    33.Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.;
    Schmitt, K. D.; Chu, C. T-W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B.;
    Schlenker, J. L.; J. Am. Chem. Soc., 1992, 114, 10834.
    34.Beck, J. S.; Chu, C. T-W.; Johnson, I. D.; Kresge, C. T.; Leonowicz, M. E.
    Roth, W.J.; Vartuli, J.C.; WO91/11390, 1991.
    35.Beshah, K.; Mark, J. E,; Ackerman, J. L. Macromolecules, 1986, 19, 2194.
    36.Chung, S. H.; Jeffrey, K. R.; Steven, J. R.; J. Chem. Phys., 1991, 94, 1803
    37.Peter P. Chu, Hsiu-Ping Jen, Fang-Rey Lo, and C. L. lang,; Macromolecues,
    1999, 32, 4738.

    QR CODE
    :::