跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張祐瑋
Yu-wei Chang
論文名稱: 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
The Structure-Activity Relationship of Carbon-Supported PtRu Catalysts for Ethanol Oxidation Reaction: The Promotional Effect of the Sn Addition and Oxidation Treatment
指導教授: 王冠文
Kuan-wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 91
中文關鍵詞: 氧化處理含氧物種三鉑化錫一氧化錫鉑釕觸媒乙醇氧化反應
外文關鍵詞: oxidation treatment., oxygen containing species, Pt3Sn, SnO, PtRu/C, ethanol oxidation reaction (EOR)
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於直接醇類燃料電池具有定置型、移動型及攜帶型能源轉換器的應用,因此已經廣泛的研究和運用。其中,乙醇是個值得被注意的替代燃料,因為它比甲醇毒性低,且可大量的由農作物或生質能源取得。然而在以乙醇做為燃料的應用上仍存在一些挑戰,例如反應過程中C-C鍵不易斷裂及一氧化碳中間產物易毒化表面鉑(Pt)的活性位置,造成乙醇的氧化機制比甲醇困難且複雜。因此,為了增益鉑基觸媒之乙醇氧化反應(ethanol oxidation reaction)效能,實用可行的方法諸如添加修飾劑或者產生含氧物種,都已被研究探討。
    本研究採用沉澱沉積法(deposition-precipitation)來製備PtRu/SnxC(x = 0 - 20 wt %)觸媒,實驗製程使用氫氣為還原劑而以Sn為修飾劑。此外,亦藉由氧化處理製程產生含氧物種。所製備觸媒的組成、結構及表面與活性關係分別以熱重分析儀、感應耦合電漿原子發射光譜分析儀、X光能譜散佈分析儀、X光繞射分析儀、高解析穿透式電子顯微鏡、程式溫度還原系統、X射線光電子能譜儀以及電化學循環伏安法做系統性的分析。在剛還原系列樣品中,發現部份Sn與Pt合金化形成Pt-Sn相,並以金屬態存在。然而,過量的Sn則以非晶質SnO或結晶化SnO2存在。由表面分析及電化學量測得知,欲提升乙醇氧化的電化學活性,必要的物種為表面的Ru和非晶質SnO,而非結晶化的SnO2。經過氧氣熱處理,Ru或Sn會從鉑基合金相中擴散到表面並分別形成RuO2、SnO2或Pt3Sn相。這些表面物種除了幫助乙醇分解吸附在鉑表面,也幫助移除吸附在鉑活性位置的一氧化碳和羧基。然而過量的氧化物會阻礙電化學觸媒的表面活性位置,並降低乙醇氧化反應和一氧化碳氧化反應。由此可知,對PtRu/SnxC電化學觸媒的乙醇氧化反應和一氧化碳氧化反應中,非晶質SnO及適量Ru的表面組成是很重要的條件。因此,在整個系列樣品中,剛還原的PtRu/Sn10C電化學觸媒具有最佳的乙醇氧化反應和一氧化碳氧化反應,而對氧化系列樣品來說,含有RuO2相的PtRu/C具有最佳的乙醇氧化反應。


    The direct alcohol fuel cells have been studied extensively because of their stationary, mobile and portable applications. Ethanol is an attractive alternative fuel, because it is less toxic than methanol and can be produced in large quantities from agricultural products or biomass. However, the application of ethanol as fuels also exists some challenges, for example, ethanol is more difficult to be oxidized to CO2 and H2O than methanol owing to the difficulties in C–C bond breaking and the formation of CO-intermediates poison the Pt active sites. Therefore, in order to promote the electroactivity of the Pt-based catalysts toward ethanol oxidation reaction (EOR), the addition of some modifiers and the formation of the oxygen containing species have been elucidated as practical methods.
    In this study, PtRu/SnxC (x = 0 - 20 wt %) electrocatalysts are prepared by the deposition-precipitation (DP) method using H2 as the reducing agent and Sn as the modifier for the EOR. Besides, the oxidation treatment is applied to generate the oxygen-containing species of the catalysts. The composition, structure, and surface-activity relationship of the Sn modified PtRu/C catalysts can be investigated systematically by the thermal gravimetric analysis (TGA), inductively coupled plasma-atomic emission spectrometer (ICP-AES), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) measurements, and cyclic voltammetry (CV) measurements, respectively. For the as-reduced PtSn/C or PtRu/SnxC catalysts, it is observed that, some Sn exist as the metallic state and alloy with Pt to form Pt-Sn phase, and excess Sn exist as the amorphous SnO or crystalline SnO2. Those amorphous SnO instead of the crystalline SnO2 and the surface Ru on the Snx samples are beneficial for the EOR. During the O2-treatment, Ru and/or Sn diffuse out from the Pt-based alloy phase and exist as RuO2, SnO2 and/or Pt3Sn, respectively. These species can not only promote dissociative adsorption of ethanol on Pt surface but remove CO and carboxyl groups adsorbed on the adjacent Pt active sites. However, the excess oxides may block the active sites on the electrocatalyst surface and deteriorate the EOR or CO-oxidation reaction. Consequently, the surface composing of amorphous SnO and appreciate Ru species are significant condition of PtRn/SnxC toward EOR and CO-oxidation, thus the as-reduced PtRu/Sn10C electrocatalyst has the best EOR activity and CO-oxidation reaction among all samples. In terms of oxidized catalysts, PtRu/C containing RuO2 phase displays high EOR activity.

    摘要 i Abstract iii 誌謝 v Table of Contents vii List of Figures x List of Tables xiii Abbreviation xiv Chapter I Introduction 1 1.1 The History of Fuel Cell 3 1.2 DEFCs 5 1.3 Anode Catalysts 8 1.3.1 The preparation methods of catalysts 8 1.3.2 The modification of catalysts by metal oxides 11 1.3.3 Importance of Pt3Sn and SnO2 14 1.3.4 The effect of the alloying degree 16 1.3.5 The effect of heat treatments and operation temperatures 17 1.3.6 The EOR mechanism 19 1.4 Motivation and Approach 23 Chapter II Experimental Section 25 2.1 Preparation of Pt-M/C Catalysts 25 2.2 Preparation of PtRu/SnxC Catalysts (x=10 or 20) 27 2.3 Heat Treatment of the Catalysts 29 2.4 Characterization of Catalysts 30 2.4.1 Thermal gravimetric analysis (TGA) 30 2.4.2 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) 30 2.4.3 Low Vacuum Scanning Electron Microscope (LVSEM) 30 2.4.4 X-ray diffraction (XRD) 30 2.4.5 High resolution transmission electron microscope (HRTEM) 32 2.4.6 Temperature programmed reduction (TPR) 32 2.4.7 X-ray photoelectron spectroscopy (XPS) 32 2.4.8 Electrochemical measurements 32 Chapter III Results and Discussion 35 3.1 The structure-activity relationship of the as-reduced catalysts 35 3.1.1 The metal loading and exact atomic compositions of the catalysts 35 3.1.2 The XRD characterization 35 3.1.3 The HRTEM characterization 39 3.1.4 The TPR characterization 39 3.1.5 The CV measurement in the absence of ethanol 43 3.1.6 The EOR activity 43 3.1.7 The CO-stripping characterization 47 3.1.8 The Durability test 49 3.1.9 Summary 49 3.2. The structure-activity relationship of oxidized catalysts 51 3.2.1 The XRD characterization 51 3.2.1.1 The as-reduced and oxidized PtRu catalysts 51 3.2.1.2 The as-reduced and oxidized Sn10 catalysts 51 3.2.1.3 The as-reduced and oxidized PtSn catalysts 54 3.2.2 The HRTEM characterization 54 3.2.3 The TPR characterization 57 3.2.4 The CV measurement in the absence of ethanol 57 3.2.5 The EOR activity 61 3.2.6 The CO-stripping characterization 64 3.2.7 The Durability test 64 3.2.8 Summary 67 Chapter IV Conclusions 68 Chapter V Future Work 70 References 71

    [1] H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, Electrochim. Acta 52 (2007) 6622.
    [2] A. O. Neto, R. R. Dias, M. M. Tusi, M. Linardi, E. V. Spinacé, J. Power Sources 166 (2007) 87.
    [3] K. W. Wang, S. Y. Huang, C. T. Yeh, J. Phys. Chem. C 111 (2007) 5096.
    [4] Y. C. Wei, C. W. Liu, K. W. Wang, ChemPhysChem 10 (2009) 1230.
    [5] S. Y. Huang, S. M. Chang, C. L. Lin, C. H. Chen, C. T. Yeh, J. Phys. Chem. B 110 (2006) 23300.
    [6] F. Colmati, E. Antolini, E. R. Gonzalez, J. Power Sources 157 (2006) 98.
    [7] E. Antolini, J. Power Sources 170 (2007) 1.
    [8] E. Antolini, F. Colmati, E. R. Gonzalez, Electrochem. Commun. 9 (2007) 398.
    [9] Z. Liu, L. Hong, M. P. Tham, T. H. Lim, H.Jiang, J. Power Sources 161 (2006) 831.
    [10] W. S. Jung, J. Han, S. Ha, J. Power Sources 173 (2007) 53.
    [11] X. Yu, P. G. Pickup, J. Power Sources 182 (2008) 124.
    [12] G. Wu, R. Swaidan, G. Cui, J. Power Sources 172 (2007) 180.
    [13] K. Kordesch and G. Simader, “Fuel cells and their applications”, CRC Press LLC, 2002.
    [14] W. R. Grove. Phil. Mag. Ser. 14 (1839) 127.
    [15] F. Peng, C. Zhou, H. Wang, H. Yu, J. Liang, J. Yang, Catal. Commun. 10 (2009) 533.
    [16] L. P. R. Profeti, D. Profeti, P. Olivi, Int. J. Hydrogen Energy 34 (2009) 2747.
    [17] D. H. Lim, D. H. Choi, W. D. Lee, H. I. Lee, Appl. Catal. B 89 (2009) 484.
    [18] F. Ye, J. Li, T. Wang, Y. Liu, H. Wei, J. Li, X. Wang, J. Phys. Chem. C 112 (2008) 12894.
    [19] D. H. Lim, D. H. Choi, W. D. Lee, D. R. Park, H. I. Lee, Electrochem. Solid-State Lett. 10 (2007) B87.
    [20] F. Colmati, E. Antolini, E. R. Gonzalez, Appl. Catal. B 73 (2007) 106.
    [21] A. O. Neto, L. A. Farias, R. R. Dias, M. Brandalise, M. Linardi, E. V. Spinacé, Electrochem. Commun. 10 (2008) 1315.
    [22] J. Wang, S. Wasmus, R. F. Savinell, J. Electrochem. Soc. 142 (1995) 4218.
    [23] F. Vigier, S. Rousseau, C. Coutanceau, J. M. Leger, C. Lamy, Topics in Catalysis 40 (2006) 111.
    [24] J. Lobato, P. Cañizares, M. A. Rodrigo, J. J. Linares, Appl. Catal. B 91 (2009) 269.
    [25] W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, J. Power Sources 140 (2005) 50.
    [26] F. C. Simões, D. M. dos Anjos, F. Vigier, J. M. Léger, F. Hahn, C. Coutanceau, E. R. Gonzalez, G. Tremiliosi-Filho, A. R. de Andrade, P. Olivi, K. B. Kokoh, J. Power Sources 167 (2007) 1.
    [27] J. B. Goodenough, Y. H. Huang, J. Power Sources 173 (2007) 1.
    [28] J. M. Léger, Electrochim Acta 50 (2005) 3123.
    [29] M. Zhu, G. Sun, H. Li, L. Cao, Q. Xin, Chin. J. Catal. 29 (2008) 765.
    [30] S. García-Rodríguez, F. Somodi, I. Borbáth, J. L. Margitfalvi, M. A. Peña, J. L. G. Fierro, S. Rojas, Appl. Catal. B 91 (2009) 83.
    [31] M. Götz, H. Wendt, Electrochim. Acta 43 (1998) 3637.
    [32] A. O. Neto, M. J. Giz, J. Perez, E. A. Ticianelli, and E. R. Gonzalez, J. Electrochem.Soc. 149 (2002) A272.
    [33] J. S. Choi, W. S. Chung, H. Y. Ha, T. H. Lim, I. H. Oh, S. A. Hong, and H. I. Lee, J. Power Sources 156 (2006) 466.
    [34] D. H. Lim, W. D. Lee, H. I. Lee, Catal. Surv. Asia 12 (2008) 310.
    [35] S. Lj. Gojković, T. R. Vidaković, D. R. Ðurović, Electrochim. Acta 48 (2003) 3607.
    [36] N. M. Marković, H. A. Gasteiger, P. N. Ross, X. Jiang, I. Villegas, M. J. Weaver, Electrochim. Acta 40 (1995) 91.
    [37] T. Iwasita, Electrochim. Acta 47 (2002) 3663.
    [38] P. A. Christensen, A. Hamnett, G. L. Troughton, J. Electroanal. Chem. 362 (1993) 207.
    [39] L. Jiang, G. Sun, Z. Zhou, W. Zhou, Q. Xin, Catal. Today 93-95 (2004) 665.
    [40] W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, J. Phys. Chem. B 107 (2003) 6293.
    [41] Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, Chem. Commun. 3 (2003) 394.
    [42] G. Li, P. G. Pickup, J. Power Sources 173 (2007) 121.
    [43] H. Song, X. Qiu, F. Li, Electrochim. Acta 53 (2008) 3708.
    [44] D. J. Guo, X. P. Qiu, L. Q. Chen, W. T. Zhu, Carbon 47 (2009) 1680.
    [45] H. Song, X. Qiu, X. Li, F. Li, W. Zhu, L. Chen, J. Power Sources 170 (2007) 50.
    [46] J. Ribeiro, D. M. dos Anjos, J. M. Léger, F. Hahn, P. Olivi, A. R. de Andrade, G. Tremiliosi-Filho, K. B. Kokoh, J. Appl. Electrochem. 38 (2008) 653.
    [47] S. Tanaka, M. Umeda, H. Ojima, Y. Usui, O. Kimura, I. Uchida, J. Power Sources 152 (2005) 34.
    [48] S. Y. Huang, C. M. Chang, C. T. Yeh, J. Catal. 241 (2006) 400.
    [49] C. Xu, P. K. Shen, J. Power Sources 142 (2005) 27.
    [50] R. F. B. De Souza, A. E. A. Flausino, D. C. Rascio, R. T. S. Oliveira, E. Teixeira Neto, M. L. Calegaro, M. C. Santos, Appl. Catal. B 91 (2009) 516.
    [51] A. O. Neto, M. Linardi, D. M. dos Anjos, G. Tremiliosi-Filho, E. V. Spinace, J Appl Electrochem 39 (2009) 1153.
    [52] J. H. Kim, S. M. Choi, S. H. Nam, M. H. Seo, S. H. Choi, W. B. Kim, Appl. Catal. B 82 (2008) 89.
    [53] M. Zhu, G. Sun, Q. Xin, Electrochim. Acta 54 (2009) 1511.
    [54] S. S. Gupta, S. Singh, J. Datta, Mater. Chem. Phy. 116 (2009) 223.
    [55] F. Colmati, E. Antolini, E. R. Gonalez, J. Electrochem. Soc. 154 (2007) B39.
    [56] A. Bonesi, G. Garaventa, W. E. Triaca, A. M. Castro Luna, Int. J. Hydrogen Energy 33 (2008) 3499.
    [57] M. Arenz, V. Stamenkovic, B. B. Blizanac, K. J. Mayrhofer, N. M. Markovic, P. N. Ross, J. Catal. 232 (2005) 402.
    [58] W. J. Zhou, S. Q. Song, W. Z. Li, G. Q. Sun, Q. Xin, S. Kontou, K. Poulianitis, P. Tsiakaras, Solid State Ionics 175 (2004) 797.
    [59] Y. Guo, Y. Zheng, M. Huang, Electrochim. Acta 53 (2008) 3102.
    [60] M. del C. Aguirre, P. Reyes, M. Oportus, I. Melián-Cabrera, J. L. G. Fierro, Appl. Cata. A 233 (2002) 183.
    [61] J. Ribeiro, D. M. dos Anjos, K. B. Kokoh, C. Coutanceau, J. M. Léger, P. Olivi, A .R. de Andrade, G. Tremiliosi-Filho, Electrochim. Acta 52 (2007) 6997.
    [62] F. C. Simões, D. M. dos Anjos, F. Vigier, J. M. Léger, F. Hahn, C. Coutanceau, E. R. Gonzalez, G. Tremiliosi-Filho, A. R. de Andrade, P. Olivi, K. B. Kokoh, J. Power Sources 167 (2007) 1.
    [63] W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. Song, G. Q. Sun, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras, J. Power Sources 126 (2004) 16.
    [64] E. V. Spinacé, M. Linardi, A. O. Neto, Electrochem. Commun. 7 (2005) 365.
    [65] F. Colmati, E. Antolini, E. R. Gonzalez, Electrochim. Acta 50 (2005) 5496.
    [66] F. Vigier, C. Coutanceau, F. Hahn, E.M. Belgsir, C. Lamy, J. Electroanal. Chem. 563 (2004) 81.
    [67] H. Massong, H. Wang, G. Samjeske, H. Baltruschat, Electrochim. Acta 46 (2000) 701.

    QR CODE
    :::