| 研究生: |
張乃文 Ni-Wen Chen |
|---|---|
| 論文名稱: |
實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式 |
| 指導教授: |
施聖洋
Shenqyang Shy |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 火焰表面密度方程式 |
| 外文關鍵詞: | flame surface density, BML model |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用雷射斷層攝影術(Laser Tomography)來獲得預混紊焰於十字型燃燒器中央測試區之二維紊焰影像,共有六組在不同燃燒條件之實驗(CH4:f = 0.9和1.2在風扇轉頻各為10 Hz 和 30 Hz,共四組;C3H8:f = 0.9在風扇轉頻各為10 Hz 和 30 Hz,共兩組)。每一組實驗均含200個以上之相同實驗,從每個實驗中選取一張瞬時紊焰影像(紊焰平均位置正好位於均勻紊流場即測試區中心處),用所獲得之200張紊焰影像來進行統計分析,計算兩種理論模式下各自所需的參數。有關BML模式,我們火焰皺摺積分長度尺度 大致上維持一定值,約在0.4~0.5公分之間,與Lewis數無關;平均交角餘弦值 則在0.58~0.68之間與紊流強度和Lewis數無關;g值約為一常數2,與Chew et al. (1990)及Shy et al. (1996)的結果類似。在S-equation的結果中發現在各組實驗中的火焰的結構,主要部分(大於60%)在靠近生成物其曲率項為一正值(源項,source term),而在接近反應物時其曲率項為一負值(消耗項,consumption term),這與Veynante et al. (1994)及Poinsot and Trouve (1994)的結果有部分類似。此外,由兩種不同理論所各自求得的火焰表面密度值(S)十分相近並可以互相對照,其數值約為Veynante et al. (1994) V型火焰的結果的一半;並且發現Le (Lewis number)對於火焰表面密度的變化有影響。在Le > 1時,增加紊流強度,S值會隨著增加;Le < 1時,則幾乎不影響S值。
This study processes six cases with different combustion conditions (CH4, f = 0.9 and 1.2 at fan-stirred frequency 10Hz and 30Hz, 4cases; C3H8, f = 0.9 at fan-stirred frequency 10Hz and 30Hz, 2 cases. Laser Tomography technique is applied to obtain 2-D turbulent flame images. In each case, we conduct several hundreds experiments under the same conditions and choose images in which their mean positions are just at the center of near isotropic region. We gather 200 images, and alculate the unclosure terms for both model (BML model and S-equation). In BML model, integral length scale of flame wrinkling is about 0.4~0.5 cm, mean cosine value of crossing angle is a constant, about 0.58~0.68, and g value is very close 2. The results show good agreement with that of Chew et al. (1990) and Shy et al. (1996). In S-equation, most of the curvature term (> 60%) are positive (source term) near product side and become negative (consumption term) near the reactant side. The resut is reminiscent with that of Trouve and Poinsot (1994)and Veynante et al.(1996). Moreover , we find that Lewis number (Le) will affect the S value. When Le > 1, increasing turbulent intensity will increase S value. while remaining the same for value of S when Le < 1.
Abdel-Gayed, R. G., Bradley, D., and Lawes, M. 1987 Turbulent burning velocities: A general correlation in terms of straining rates. Proc. R. Soc., Vol. 414, pp.389-413
Abdel-Gayed, R. G., Bradley, D., and Lawes, M. 1987 Turbulent burning velocities: A general correlation in terms of straining rates. Proc. R. Soc., Vol. 414, pp.389-413
Bradley, D. 1992 How fast can we burn? Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 247-262.
Bradley, D. 1992 How fast can we burn? Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 247-262.
Bray, K. N. C., Libby, P. A., and Moss, J. B. 1984, Combust. Sci. Technol., vol 41, pp. 143-172
Bray, K. N. C., Libby, P. A., and Moss, J. B. 1984, Combust. Sci. Technol., vol 41, pp. 143-172
Bray, K. N. C., Libby, P. A., and Moss, J. B. 1984, Combust. Sci. Technol., vol 41, pp. 143-172
Chew, T. C., Bray, K. N. C., and Britter, R. E. 1990 Spatially resolved flamelet statistics for reaction rate modeling. Combustion and Flame, vol. 80, pp. 65-82.
Damkohler, G. Z. 1940 Electrochem., Angew. Phy. Chem., Vol. 44, pp. 601.
Damkohler, G. Z. 1940 Electrochem., Angew. Phy. Chem., Vol. 44, pp. 601.
Law, C. K. 1988 Dynamics of stretched flames. Twenty-second Symposium (International) on Combustion. The Combustion Institute, pp. 1381-1402.
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech., vol. 384, pp. 107-132.
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech., vol. 384, pp. 107-132.
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech., vol. 384, pp. 107-132.
Peters, N. 1999 The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech., vol. 384, pp. 107-132.
Trouve, A., and. Poinsot, T., 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech., vol. 278, pp. 1-31.
Trouve, A., and. Poinsot, T., 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech., vol. 278, pp. 1-31.
Zhang, Y., Chew, T. C., and Bray, K. N. C. 1988 Laser microscopy for particle sizing and tracking. Lecture Series - Von-Karman Institute, Particle Image Displacement Velocimetry.
Zhang, Y., Chew, T. C., and Bray, K. N. C. 1988 Laser microscopy for particle sizing and tracking. Lecture Series - Von-Karman Institute, Particle Image Displacement Velocimetry.
張瑞鴻 1995 預混紊流燃燒薄火焰模式之實驗模擬,國立中央大學機械工程研究所,碩士論文。
伊偉光 1996 預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展
林孟良 1998 氣態預混紊流燃燒速度量測於一近似等向性紊流場。 國立中央大學機械工程研究所,碩士論文。
李以霠 1999 預混紊流燃燒火焰表面密度傳輸方程式之實驗分析。國立中央大學機械工程研究所,碩士論文。
林文基 1999 甲烷與丙烷預混紊流燃燒速度的量測。國立中央大學機械工程研究所,碩士論文。
魏建樟 1999 應用雷射斷層攝影術探討預混紊焰傳播,國立中央大學機械工程研究所,碩士論文。