| 研究生: |
林淑惠 Shu-hui Lin |
|---|---|
| 論文名稱: |
以超曲面迴歸克利金進行降雨量空間推估 Rainfall Spatial Interpolation Using Hypersurface Regression Kriging |
| 指導教授: |
李錫堤
Chyi-tyi Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 179 |
| 中文關鍵詞: | 內插 、地質統計 、迴歸克利金 、降雨 |
| 外文關鍵詞: | interpolated, rainfall, geostatistics, regression kriging |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
豪雨誘發山崩之研究中,降雨量為相當重要的促崩因子。欲得知空間中任一點的降雨量最直接的方法即為從雨量站觀測求得。惟架設較密的雨量站須耗費大量金錢和人力資源,所以為求得規則網格點雨量值,曾有許多不同的內插方法被用來推估降雨量的空間分佈。本研究使用迴歸克利金(regression kriging,RK),並與其他既有內插方法互相比較,以瞭解新方法之有效性。
本研究以2005年馬莎颱風事件為例,收集水利署及氣象局在馬莎颱風期間之雨量站資料,經檢視與校正後將資料按測站整理成最大時雨量以及總雨量,再進行石門水庫集水區降雨量空間推估。研究中分別以單變量的距離平方反比法與克利金法,以及結合數值高程模型的RK_1D、RK_trend兩種多變量地質統計方法進行降雨空間內插。RK_1D係使用降雨量與高程的一維線性迴歸式做為推估降雨量的趨勢,但台灣地區降雨量與高程之相關係數偏低(0.26),故加入高程值進行推估未能有效改善降雨量分佈推估。為改善此問題,RK_trend使用雨量站座標及高程值擬合出降雨量之超曲面,進行分析後發現其推估結果較其他方法更能表現出細微的空間降雨量分佈,且其估計誤差也較小,表示RK_trend的推估結果較佳。
本研究並針對四種不同內插方法分別進行交叉驗證,結果證實各種地質統計方法的估計誤差值確實具有可信度,尤以最大時雨量的驗證結果為然。雖然以克利金所得的交叉驗證結果整體誤差最小,但詳細探討後發現若兩鄰近雨量站的高程與降雨量相近時,RK_trend的交叉驗證所得真實誤差最小,較無偏估的現象。
In storm-induced landslide study, rainfall capacity is an important triggering factor. A direct way to know rainfall value at any point in the study area is interpolation from the rainfall observation gauges. Because the density of gauge stations is commonly inadequate, many different interpolation methods were used for estimate the spatial distribution of rainfall. In this study, we test regression kriging (RK), and compare the effectiveness of this new method with other existing interpolation methods.
In this study, we collect rainfall data during the typhoon Matsa from the Water Resources Agency, Taiwan and from the Central Weather Bureau, Taiwan. These data were visually examined and errors were fixed. Good quality data were processed to extract total rainfall and maximum hourly rainfall values. Inverse square distance method and kriging method were used for comparison with two multivariate geostatistical algorithms: RK_1D and RK_trend. RK system uses the rainfall value as primary variable and the elevation as auxiliary variable. Because the rainfall values and the elevations have a correlation coefficient only about 0.26, the auxiliary variable cannot effectively improve the rainfall estimation in RK_1D. To solve this problem, we tested RK_trend. A hypersurface which incorporates locations (x, y) and elevation (z) was used to describe the drift of rainfall values. The results find that the RK_trend method shows better rainfall spatial distribution and smaller estimation errors than that of other methods.
The performances of the four interpolators were further examined by cross-validation method. Results confirm that the errors estimated from various geostatistical methods do have reliability, especially for the maximum hourly rainfall case. Although cross-validation result indicates kriging method provides the smallest mean absolute error, however when two rain gauge stations are close, and the rainfall values as well as the elevations are similar, RK_trend method provides the smallest mean absolute error and indicates less bias.
林淑媛(2003)地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文,共140頁。
張永欣(2007)以多變量地質統計方法進行雨量空間內插,國立中央大學應用地質研究所碩士論文,共187頁。
經濟部中央地質調查所(2003)山崩調查與危險度評估-山崩潛感分析之研究(1/3),經濟部中央地質調查所,共154頁。
經濟部中央地質調查所(2004)山崩調查與危險度評估-山崩潛感分析之研究(2/3),經濟部中央地質調查所,共264頁。
經濟部中央地質調查所(2005)山崩調查與危險度評估-山崩潛感分析之研究(3/3),經濟部中央地質調查所,共264頁。
經濟部中央地質調查所(2008a)易淹水地區上游集水區地質調查與資料庫建置(第1期96年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫,經濟部中央地質調查所,共208頁。
經濟部中央地質調查所(2008b)易淹水地區上游集水區地質調查及資料庫建置(第2期97年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(1/3),經濟部中央地質調查所,共579頁。
經濟部中央地質調查所(2009)易淹水地區上游集水區地質調查及資料庫建置(第2期98年度)-集水區地質調查及山崩土石流調查與發生潛勢評估計畫(2/3),經濟部中央地質調查所,共594頁。
Ahmed, S., Marsily, G. D. (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity, Water Resources Research, 23, 9, 1717-1737.
Basistha, A., Arya, D. S., Goel, N. K. (2008) Spatial Distribution of Rainfall in Indian Himalayas - A Case Study of Uttarakhand Region, Water Resources Management, 22, 1325-1346.
Bargaoui, Z. K., Chebbi, A. (2009) Comparison of two kriging interpolation methods applied to spatiotemporal rainfall, Journal of Hydrology, 365, 56-73.
Bent, A.E. (1943) Radar echoes from atmospheric phenomena, MIT radiation laboratory rep., 173, 10.
Bishop, T., McBratney, A. (2001) A comparison of prediction methods for the creation of field-extent soil property maps, Geoderma, 103, 1-2, 149-160.
Bourennane, H., King, D., Chery, P., Bruand, A. (1996) Improving the kriging of a soil variable using slope gradient as external drift, European Journal of Soil Science, 47, 4, 473-483.
Bourennane, H., King, D., Couturier, A. (2000) Comparison of kriging with external drift and simple linear regression for predicting soil horizon thickness with different sample densities, Geoderma, 97, 3- 4, 255- 271.
Chiles, J., Delfiner, P. (1999) Geostatistics: Modeling Spatial Uncertainty, Wiley-Interscience, New York, 720p.
Daly, C., Neilson, R. P., Phillips, D.L. (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain, Journal of Applied Meteorology, 33, 140-158.
Deutsch, C., Journel, A. (1997) GSLIB: Geostatistical Software and User’s Guide, 2nd ed., Oxford University Press, USA, 384p.
Diodato, N. and Ceccarelli, M. (2005) Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy), Earth Surface Processes and Landforms, 30, 3, 259-268.
Dirks, K. N., Hay, J. E., Stow, C. D., Harris, D. (1998) High-resolution studies of rainfall on Norfolk Island: Part II: Interpolation of rainfall data, Journal of Hydrology, 208, 3-4, 187-193.
Draper, N. and Smith, H. (1998) Applied Regression Analysis, 3rd ed., Wiley-Interscience, 736p.
Gobin, A. (2000) Participatory and spatial-modelling methods for land resources analysis, Phd thesis, Katholik Universiteit Leuven.
Gobin, A., Campling, P., Feyen, J. (2001) Soil-landscape modelling to quantify spatial variability of soil texture, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 1, 41-45.
Goovaerts, P. (1997) Geostatistics for Natural Resources Evaluation, Oxford University Press, New York, 496p.
Goovaerts, P. (1999a) Geostatistics in soil science: state-of-the-art and perspectives, Geoderma, 89, 1-2, 1-45.
Goovaerts, P. (1999b) Using elevation to aid the geostatistical mapping of rainfall erosivity, Catena, 34, 3-4, 227-242.
Goovaerts, P. (2000) Geostatistcal approaches for incorporating elevation into the spatial interpolation of rainfall, Journal of Hydrology, 228, 1-2, 113-129.
Guenni, L. and Hutchinson, M. F. (1998) Spatial interpolation of the parameters of a rainfall model from ground-based data, Journal of Hydrology, 212-213, 335-347.
Haberlandt, U. (2007) Geostatistical interpolation of hourly precipitation from rain gauge and radar for a large-scale extreme rainfall event, Journal of Hydrology, 332, 144-157.
Hengl, T., Heuvelink, G., Stein, A. (2003) Comparison of kriging with external drift and regression kriging, Technical report, International Institute for Geo-information Science and Earth Observation (ITC) Enschede, URL http://www.itc.nl/library/Academic_output
Hengl, T., Heuvelink, G., Stein, A. (2004) A generic framework for spatial prediction of soil variables based on regression-kriging, Geoderma, 120, 1-2, 75-93.
Hengl, T., Heuvelink, G., Rossiter, D. (2007) About regression-kriging: From equations to case studies, Computers and Geosciences, 33, 10, 1301-1315.
Hevesi, J. A., Istok, J.D., Flint, A.L. (1992a) Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis, Journal of Applied Meteorology, 31, 7, 661-676.
Hevesi, J. A., Flint, A. L., Istok, J. D. (1992b) Precipitation estimation in mountainous terrain using multivariate geostatistics. Part II: Isohyetal maps, Journal of Applied Meteorology, 31, 677-688.
Hudson, G., Wackernagel, H. (1994) Mapping temperature using kriging with external drift: Theory and an example from Scotland, International Journal of Climatology, 14, 1, 77-91.
Isaaks, E. H., Srivastava, R. M., (1989) An Introduction to Applied Geostatistics, Oxford University Press, USA, 592p.
Journel, A. G., Huijbregts, C. J., 1978 Mining Geostatistics, Academic Press, New York, 600p.
Knotters, M., Brus, D. J., Voshaar, J. (1995) A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations, Geoderma, 67, 3-4, 227-246.
Lloyd, C.D. (2005) Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain, Journal of Hydrology, 308, 1-4, 128-150.
Marshall, J.M., and Palmer, W. McK. (1948) The distribution of raindrops with size, J. Metero., 5, 165-166.
Martinez-Cob, A. (1996) Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain, Journal of Hydrology, 174, 19-35.
Matheron, G. (1971) The theory of regionalised variables and its applications, Ecole nationale supe rieuredes mines, Paris, 211p.
McBratney, A. B., Odeh, I., Bishop, T., Dunbar, M., Shatar, T. (2000) An overview of pedometric techniques of use in soil survey, Geoderma, 97, 3-4, 293-327.
Meul, M., Meirvenne, M.V. (2003) Kriging soil texture under different types of nonstationarity, Geoderma, 112, 3-4, 217-233.
Motaghian, H. R., Mohammadi, J. (2009) Predictive Infiltration Rate Mapping with Improved soil and Terrain Predictors, Journal of Applied Sciences, 9, 8, 1562-1567.
Myers, D. E. (1982) Matrix formulation of cokriging, Mathematical Geology, 14, 3, 249-257.
Odeh, I. O. A., McBratney, A. B., Chittleborough, D. J. (1994) Spatial prediction of soil properties from landform attributes derived from a digital elevation model, Geoderma, 63, 3-4, 197-214.
Odeh, I. O. A., McBratney, A. B., Chittleborough, D. J. (1995) Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging, Geoderma, 67, 3-4, 215-226.
Papritz, A., Stein, A. (1999) Spatial prediction by linear kriging. In: Stein, A., van der Meer, F., Gorte, B. (Eds.), Spatial Statistics for Remote Sensing, Kluwer Academic Publishers, Dodrecht, 83-113.
Wackernagel, H. (1998) Multivariate Geostatistics: An Introduction with Applications, 2nd ed., Springer, Berlin, 291p.
Wilding, L. P., Drees L. R. (1983) Spatial variability and pedology, In: Wilding, L.P., Smeck, N.E., Hall, G.F. (Eds.) Pedogenesis and Soil Taxonomy: I. Concepts and Interactions, Elsevier, Amsterdam, 83-116.