| 研究生: |
廖育萱 Yu-Hsuan Liao |
|---|---|
| 論文名稱: |
全介電幾何相位超穎表面的 抗反射設計 Design anti-reflection for all-dielectric geometric phase metasurface |
| 指導教授: |
王智明
Chih-Ming Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 超穎介面 |
| 外文關鍵詞: | metasurface |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將PB-phase之超穎介面的應用簡化為半波板模型,探討將奈米鰭與抗反射層(MgF2)結合後之光學特性及總偏振轉效率(Overall PCE)。當抗反射層為平坦的薄膜結構時,對效率上提升是無貢獻,因此抗反射層需與奈米鰭相同具有結構異向性,將抗反射層置於奈米鰭頂部時,其Overall PCE提升會較穩定。在GaN奈米鰭情況下,當MgF2從0 nm增加到160 nm時,Overall PCE可從53.18% 提升至55.06%,提高1.88%,但因為GaN材料於可見光範圍下會有吸收的損耗,導致效率提升會較困難。使用Nb2O5奈米鰭時,其折射率適中且無吸收特性,相較於GaN其Overall PCE高於1.7倍, 加入MgF2後,Overall PCE從92.38%提升至94.58%,可提升2.2%。
In this thesis, the optical properties and polarization conversion efficiency (P.C.E) has been investigated by combining the anti-reflection layer (MgF2) with the nano-fin. In order to obtain the highest P.C.E, the height of the nano-fin has been considered as a half-wave plate. We numerically demonstrated that a flat anti-reflection film shows no contribution to efficiency improvement. The structural heterogeneity is necessary for the anti-reflection. Moreover, the overall P.C.E can be enhanced more stably when MgF2 stacked on the top of nano-fin.
In the case of the GaN nano-fin, the overall P.C.E is enhance from 53.18% to 55.06% when the height of MgF2 is increased from 0 nm to 160 nm. On the other hand, it is a challenge to enhance the efficiency of GaN based nano-fin due to the absorption loss in the visible light range. Therefore, we numerically investigated the materials that do not suffer from absorption loss in the visible light. Among them, niobium oxide (Nb2O5) becomes a good option because of the fair refractive index and no absorption. In comparison with GaN nano-fin, the overall PCE of Nb2O5 nano-fin is 1.7 times higher. The highest overall P.C.E enhances from 92.38% to 94.58% when MgF2 stacked on the top.
參考文獻
[1] F. Ding, Z. Wang, S. He, V. M. Shalaev, A. V. Kildishev, ACS Nano 2015, 9,
4111.
[2] K. L. Kelly, E. Coronado,L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B107, 668 (2003)
[3] W. T. Chen et al., "High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images," Nano Letters, vol. 14, no. 1, pp. 225-230. (2014)
[4] N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, "Lasing spaser," Nature Photonics, vol. 2, no. 6, pp. 351-354. (2008)
[5] S. L. Sun et al., "High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces," Nano Letters, vol. 12, no. 12, pp. 6223-6229. (2012)
[6] D. Chanda et al., "Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing," Nature Nanotechnology, vol. 6, no. 7, pp. 402-407. (2011)
[7] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, vol. 352, no. 6290, pp. 1190-1194 (2016)
[8] H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and Applications of Metasurfaces," Small Methods, vol. 1, no. 4, Art. no. 1600064. (2017)
[9] X. Q. Zhang et al., "Broadband Terahertz Wave Deflection Based on C-shape Complex Metamaterials with Phase Discontinuities," Advanced Materials, vol. 25, no. 33, pp. 4567-4572. (2013)
[10] B. H. Chen et al., "GaN Metalens for Pixel-Level Full-Color Routing at Visible Light," Nano Letters, vol. 17, no. 10, pp. 6345-6352. (2017)
[11] Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., & Zhang, S.
(2015). Metasurface holograms reaching 80% efficiency. Nature
Nanotechnology, 10(4), 308–312.
[12] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392(1802), pp. 45-57. (1984)
[13] Ni, X., Wong, Z. J., Mrejen, M., Wang, Y., & Zhang, X. (2015). An ultrathin
invisibility skin cloak for visible light. Science, 349(6254), 1310–1314.
[14] Huang, Y.-W., Chen, W. T., Tsai, W.-Y., Wu, P. C., Wang, C.-M., Sun, G., &
Tsai, D. P. (2015). Aluminum Plasmonic Multicolor Meta-Hologram. Nano
Letters, 15(5), 3122–3127.
[15] Yu, Y. F., Zhu, A. Y., Paniagua-Domínguez, R., Fu, Y. H., Luk’yanchuk, B., &
Kuznetsov, A. I. (2015). High-transmission dielectric metasurface with 2π
phase control at visible wavelengths. Laser & Photonics Reviews, 9(4), 412–
418.
[16] Park, J.-S., Zhang, S., She, A., Chen, W. T., Lin, P., Yousef, K. M. A., …
Capasso, F. (2019). All-glass, large metalens at visible wavelength using deep-
ultraviolet projection lithography. Nano Letters.
[17] Fan, Z.-B., Shao, Z.-K., Xie, M.-Y., Pang, X.-N., Ruan, W.-S., Zhao, F.-L., …
Dong, J.-W. (2018). Silicon Nitride Metalenses for Close-to-One Numerical
Aperture and Wide-Angle Visible Imaging. Physical Review Applied, 10(1).
[18] Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B., & Capasso,
F. (2017). Metasurface Polarization Optics: Independent Phase Control of
Arbitrary Orthogonal States of Polarization. Physical Review Letters, 118(11). [19] Emani, N. K., Khaidarov, E., Paniagua-Domínguez, R., Fu, Y. H., Valuckas, V.,
Lu, S., … Kuznetsov, A. I. (2017). High-efficiency and low-loss gallium nitride
dielectric metasurfaces for nanophotonics at visible wavelengths. Applied
Physics Letters, 111(22), 221101.
[20] Song, Q., Baroni, A., Sawant, R., Ni, P., Brandli, V., Chenot, S., … Genevet, P.
(2020). Ptychography retrieval of fully polarized holograms from geometric-
phase metasurfaces. Nature Communications, 11(1).
[21] Li, L., Liu, Z., Ren, X., Wang, S., Su, V.-C., Chen, M.-K., … Tsai, D. P.
(2020). Metalens-array–based high-dimensional and multiphoton quantum
source. Science, 368(6498), 1487–1490.
[22] Lin, R. J., Su, V.-C., Wang, S., Chen, M. K., Chung, T. L., Chen, Y. H., … Tsai,
D. P. (2019). Achromatic metalens array for full-colour light-field imaging.
Nature Nanotechnology.
[23] T. Kawashima, H. Yoshikawa, S. Adachi. Optical properties of hexagonal
GaN, J. Appl. Phys. 82, 3528-3535 (1997)
[24] H. R. Philipp, "Silicon dioxide (SiO2) glass," in Handbook of Optical Constants
of Solids, E. D. Palik, ed. (Academic, 1985), Vol. I, pp. 749.
[25] R. C. Jones, J. Opt. Soc. Am. 31, 488 ; 31, 500. (1941)
[26] Chen.Yi.Yu. Qiu-Chun Zeng, “Scattering Analysis and Efficiency Optimization
of Dielectric Pancharatnam–Berry-Phase Metasurfaces” Nanomaterials 2021, 11,
586.(2021)
[27] https://www.nidek-intl.com/product/coating_technical/coating_type_1.html
[28] 1) D. T. Pierce and W. E. Spicer, Electronic structure of amorphous Si from
photoemission and optical studies, Phys. Rev. B 5, 3017-3029 (1972)
2) Handbook of Optical Constants of Solids, Edward D. Palik, ed. Academic
Press, Boston, 1985 (ref. 2 provides numerical values for the graphical data
reported in ref. 1)
[29] Bendavid, P.J. Martin, Deposition and Modification of Titanium
Dioxide Thin Films Prepared by Filtered Arc Deposition, Thin
Solid Films, Vol. [360], (2000), 24.
[30] F. Lemarchand, private communications (2013). Measurement method described
in: L. Gao, F. Lemarchand, and M. Lequime. Exploitation of multiple incidences
spectrometric measurements for thin film reverse engineering, Opt. Express 20, 15734-15751 (2012)
[31] S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph, T.A.F. König, Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating, ACS Appl. Mater. Interfaces, 11, 13752-13760 (2019)
(Numerical data kindly provided by Dr. Tobias König)
[32] L. V. Rodríguez-de Marcos, J. I. Larruquert, J. A. Méndez, J. A. Aznárez. Self-
consistent optical constants of SiO2 and Ta2O5 films, Opt. Mater. Express 6, 3622-3637 (2016) (Numerical data kindly provided by Juan Larruquert)
[33] K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator, Opt. Lett. 40, 4823-4826 (2015)
[34] A significant portion of the materials follow “Photonic Devices,”
Jia-Ming Liu, Chapter 2