跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林子翔
Tzu-Shiang Lin
論文名稱: 非同調通訊系統之研究
A Study of Noncoherent Communication Systems
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 73
中文關鍵詞: 非同調檢測
外文關鍵詞: noncoherent
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討三個主題: 調適性解調系統、區塊式相差編碼及用於非
    同調區塊碼之籬柵碼搜尋。
    在第二章,本文提出了可加性白高斯雜訊(additive white Gaussian
    noise, AWGN)通道及準穩態衰減通道(quasi-static fading channel)上使用無率碼(rateless code)之調適性解調系統的一個新檢測器。本文提出的檢測器能依照最大聯合機率找最可靠位元,而且等效於使用16DPSK(di erential phase-shift keying)調變的檢測器[2]。本文將使用決策邊界比較本文提出的用於調適性解調系統的16DPSK檢測器與傳統DPSK的錯誤效能。對於使用16DAPSK ( di erential amplitude phase-shift keying)調變,本文提出的檢測器比檢測器[2]有較佳的錯誤效能,而且除了解出1個可靠位元的情況下效能勝過16DPSK檢測器[2]。對於使用16PSK (phase-shift keying)調變,本文提出的檢測器會和16PSK檢測器[1]有相同的錯誤效能。對於使用16QAM (quadrature amplitude modulation)調變,本文提出的檢測器在解出2個最可靠位元時有較佳錯誤效能。本文另外研究調適性解調使用多重訊號差分檢測,而得到的結論是多重訊號差分檢測不適用於調適性解調系統。
    在第三章中,本文提出用於區塊編碼16QAM及16TAPSK的區塊式相差編碼方法。由此方法可以使傳送區塊碼字的第一個符號和前一個傳送區塊碼字的最後一個符號相同,因此可以省去不傳。最後比較用於區塊式相差編碼的區塊編碼16QAM及16TAPSK和非同調區塊編碼16QAM及16TAPSK的錯誤效能比較。
    在第四章中,本文提出使用非同調籬柵碼視作非同調區塊碼,找出不同狀態數下之最佳的非同調籬柵碼。此外將所搜尋的非同調籬柵碼和非同調區塊編碼調變在多個碼率上比較錯誤效能。所搜尋到的非同調籬柵碼可以提供系統多個選擇在不同碼率上。


    In this dissertation, we aim to study on three topics: adaptive demodulation (ADM) system, block-wise differential encoding and trellis searches for noncoherent block codes.

    In Chapter 2, we propose a new detector of adaptive demodulation (ADM) for rateless code over the additive white Gaussian noise (AWGN) channel or the quasi-static fading channel. For 16-DPSK, we show that the proposed detector is able to find bits with the largest joint probability, and equivalent to the detector in [2]. Besides, the error performance of ADM is compared with conventional DPSK by decision boundaries. For 16-DAPSK, the proposed detector has better error performance than the detector in [2], and also outperform 16-DPSK except that the only one bit is recovered. For 16-PSK, the proposed detector has the same error performance as the detector in [1]. For 16-QAM, the proposed detector has better error performance than the detector in [1] except that three bits are recovered. In addition, we research ADM using multiple-symbol differential detection (MSDD) and conclude that MSDD is not suitable for ADM.

    In Chapter 3, we propose a block-wise differential encoding method for noncoherent block-coded 16TAPSK and 16QAM. By this method, the first symbol of the transmitted codeword is the same as the last symbol of the previously transmitted codeword, so it can be omitted. We analyze the minimum noncoherent distance of noncoherent block-coded QAM/TAPSK, and also modify the bit labeling of 16QAM and 16TAPSK to achieve better error performance for noncoherent block-coded QAM/TAPSK.

    In Chapter 4, we propose to use noncoherent trellis codes as noncoherent block codes. Trellis codes for different number of trellis states are searched. Besides, we compare the search trellis codes with codes of noncoherent block-coded modulation over various rate. The search codes can offer various trellis states for various rates.

    Abstract............................................i List of Figures...................................vii List of Tables....................................xii 1 Introduction......................................1 2 A New Detector of Adaptive Demodulation Systems...4 2.1 Introduction....................................4 2.2 Review of ADM Systems...........................6 2.3 The Proposed Detector for Adaptive Demodulation Systems ....................................................8 2.4 Decision Regions and Eoor Probability for Noncoherent ADM Systems.........................................9 2.4.1 16-DPSK.......................................9 2.4.2 16-DAPSK and Simulation Results..............12 2.4.3 Noncoherent ADM Using MSDD...................17 2.5 Decision Regions and Eoor Probability for Coherent ADM Systems............................................20 2.6 Concluding Remarks.............................22 3 Noncoherent Block-Coded 16TAPSK and 16QAM for Block-Wise Differential Encoding..............................25 3.1 Introduction...................................25 3.2 Review of Noncoherent Block-Coded Modulation...26 3.3 Noncoherent Block-Coded 16TAPSK and 16QAM for Block-Wise Differential Encoding.........................29 3.3.1 16TAPSK......................................29 3.3.2 16QAM........................................31 3.4 Simulation Results.............................33 4 Trellis Searchs for Noncoherent Block Codes......40 4.1 Introduction...................................40 4.2 Review of NBC-MPSK.............................41 4.2 Review of DTCM.................................42 4.4 Codes Searches and Simulation Results..........45 5 Conclusions......................................52

    [1]J. D. Brown, S. Pasupathy and K. N. Plataniotis, “Adaptive demodulation using rateless erasure cides,” IEEE Trans. Commun., vol. 54, pp. 1574-1585, Sep. 2006.
    [2]J. D. Brown, J. Abouei,K. N. Plataniotis and S. Pasupathy, “Adaptive Demod- ulation in Differentially Coherent Phase System: Design and Performance Anal- ysis,” IEEE Trans. Commun., vol. 59, pp. 1772-1778, July 2011.
    [3]A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, pp. 2551-2567, June 2006.
    [4]G. Colavolpe and R. Raheli, “Noncoherent sequence detection,” IEEE Trans. Commun., vol. 47, pp. 1376-1385, Sept. 1999.
    [5]R. Y. Wei, S. S. Gu and T. C. Sue, “Noncoherent block-coded TAPSK,” IEEE Trans. Commun., vol. 57, pp. 3195-3198,Nov. 2009.
    [6]B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Trans. Inf. Theory, vol. 46, pp. 543-564, Mar 2000.
    [7]Y. M. chen and Y. L. Ueng, “Noncoherent amplitude/phase modulation trans- mission schemes for Rayleigh block fading channels,” IEEE Trans. Commun., vol. 61, pp. 217-227, Jan 2013.
    [8]D. Divsalar and M. K. Simon, “Multiple-Symbol differential detection of MPSK,” IEEE Trans. Commun., vol. 38, pp. 300-308, Mar. 1990.
    [9]D. Divsalar and M. K. Simon, “Maximun-likehood differential detection of un- coded and trellis coded amplitude phase modulation over AWGN and fading channels-metrics and performance,” IEEE Trans. Commun., vol. 42, pp. 76-89, Sep. 1994.
    [10]H. Leib and S. Pasupathy, “The phase of a vector perturbed by Gaussian noise and differential coherent receivers,” IEEE Trans. Inf. Theory, vol. 34, pp. 1491- 1501, Nov. 1988.
    [11]F. Edbauer, “Bit error rate of binary and quaternary DPSK signala with multi- ple differential feedback detection,” IEEE Trans. Commun., vol. 40, pp. 457-460, Mar. 1992.
    [12]F. Adachi and M. Sawahashi, “Decision feedback multiple-symbol differential detection for M -ary DPSK,” Electroc Lett., vol. 29, pp. 1385-1387, July. 1993.
    [13]W. Webber, III, “Differential encoding for multiple amplitude and phase shift keying systems,” IEEE Trans. Commun., vol. 26, pp. 85-391, Mar. 1978.
    [14]D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48, pp. 651-668, Mar. 2002.
    [15]R. Y. Wei, “Differential Encoding by A Look-Up Table for Quadrature- Amplitude Modulation,” IEEE Trans. Commun., vol. 59,no 1,pp. 84-94, Jan. 2011.
    [16]R. Knopp and H. Leib, “M-ary phase coding for the noncoherent AWGN chan- nel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
    [17]F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
    [18]R. Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 53, pp. 978-986, June 2005.
    [19]R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 56, pp. 1616-1625, Oct. 2008.
    [20]R. Y. Wei, T. S. Lin and S. S. Gu , “Noncoherent block-coded TAPSK and 16QAM using linear component codes,” IEEE Trans. Commun., vol. 58,no 9, pp. 2493-2498, Sep. 2010.
    [21]G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans.Inform. Theory, vol. 28, pp. 55-67, Jan. 1982.
    [22]G. Ungerboeck, “Trellis-coded modulation with redundant signal sets-Part I: Introduction,” IEEE Communications Magazine, vol. 25,no 2, pp. 5-11, Feb. 1987.
    [23]G. Ungerboeck, “Trellis-coded modulation with redundant signal sets-Part II: State of the art,” IEEE Communications Magazine, vol. 25,no 2, pp. 12-21, Feb. 1987.
    [24]R. Y. Wei , “Differetial encoding by a look-up table for quadrature-amplitude modulation,” IEEE Trans. Commun., vol. 59,no 1, pp. 84-94, Jan. 2011.
    [25]R. Y. Wei, J. A. Ritcey and B. S. Lu , “TCM with differential encoding: set partitioning, trellis designs, and distance analysis,” IEEE Trans. Commun., vol. 63,no 8, pp. 2776-2787, Aug. 2015.

    QR CODE
    :::