| 研究生: |
簡中彥 Chung-Yen Chien |
|---|---|
| 論文名稱: |
選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用 Germanium quantum dots formed by selectively oxidizing poly-SiGe nano-structure for single electron transistor application |
| 指導教授: |
李佩雯
Pei-Wen Li 郭明庭 Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 單電子電晶體 、自我對準結構 、複晶矽鍺 、選擇性氧化 |
| 外文關鍵詞: | selective oxidation, poly-SiGe, seld-aligned structure, single electron transistor |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從1985年單電子電晶體 (single electron transistor)的概念由莫斯科大學的兩位教授提出後,由於它的高操作速度、低消耗功率,以及有別於傳統元件的量子特性,使得單電子電晶體吸引了許多研究團隊的注意。近十年來,為了和CMOS 製程技術整合,以矽基 (silicon base)半導體製作的單電子電晶體,更如雨後春筍般地相繼發表。然而,這些元件都面臨了製程再現性、關鍵尺寸不易微縮,與製程花費昂貴等問題。
在本論文中,著重於改善本實驗室過去以低壓化學氣相系統 (low pressure chemical vapor deposition system)將複晶矽鍺沉積在絕緣層上碰到的沉積率太快、薄膜表面起伏過大,與薄膜中鍺含量過高等問題。此外,將複晶矽鍺應用到本實驗室早先開發的三端電極與鍺量子點自我對準的結構中,且佐以高解析度的穿透式電子顯微鏡觀察,提出選擇性氧化複晶矽鍺合金自我形成鍺量子點與穿隧接面的直接證據。根據穿透式電子顯微鏡影像,本論文觀察到,鍺量子的顆數與閘長度間具有很強的相依性。當閘長度小於40 nm 時僅會形成單一一顆鍺量子點,但當閘長度大於40 nm時,則會形成一顆或兩顆的鍺量子點。最後以電子顯微鏡影像搭配模擬對奈米結構的氧化過程進行分析。
Since the first concept of single electron transistor (SET) was proposed by Likharev et al. in Moscow University at 1985, SETs have attracted a lot of attention due to their high speed, ultralow power consumption, and unique quantum characteristics. In decades, many researchers have developed the cutting-edge fabrication technology for silicon based SETs in complementary metal-oxide-semiconductor (CMOS) compatible processes. However, all these devices face the issue of reproducibility, scalability and high cost issues.
The main theme of this thesis is to improve the process parameters such as deposition rate, surface roughness and germanium mole fraction of poly-SiGe on insulator using low pressure chemical vapor deposition (LPCVD) technique. Consequently, we could apply the developed poly-SiGe films into a self-aligned SET structure, which has been proposed and demonstrated. We have used transmission electron microscopy (TEM) to verify the existence and number of self-assembled germanium quantum dot and tunneling barriers widths. We found that only one Ge quantum dots embedded in oxide matrix when channel length less than 40 nm, while one or two Ge quantum dot(s) for the channel length larger than 40 nm. The results are well explained by simulated oxidation contour of nano-structure using T-suprem4.
[1] K. K Likharev, “Correlated discrete transfer of single electrons in ultrasmall tunnel junctions,” IBM J. Res. Develop., vol. 32, pp. 144-158, 1988
[2] 陳啟東,「單電子電晶體簡介」,物理雙月刊,第二十六卷,第三期,483-490頁,2004年6月
[3] W. T. Lai, and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dot formed by thermal oxidation of Si1-xGex-on-insulatior,” Nanotechnol., vol. 18, pp. 145402-145408, 2007
[4] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, and M. J. Tsai, “Fabrication of a germanium quantum-dot single-electron transistor with large coulomb-blockade oscillations at room-temperature,” Appl. Phys. Lett., vol. 85, pp. 1532-1534, 2004
[5] G. L. Chen, David M. T. Kuo, W. T. Lai, and P. W. Li, “Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes,” Nanotechnology., vol.18, pp.475402-475406, 2007
[6] R. P. Feynman, “There is plenty of room at the bottom,” presented at the American Physical Soc. Meet. at Cal. Tech., report in Miniaturization, H.Gilbert, Ed. New York: Reinhold, 1961
[7] J. Y. Zhang, Y. H. Ye, X. L. Tan, and X. M. Bao, “Effect of density of Ge nanocrystals viole-bule photoluminescence of Ge+-implanted SiO2 film,” J. Appl. Phys., vol. 86, pp. 6139-6142, 1999
[8] M. E. Rubin, G. Medeiros-Ribeiro, J. J. O’Shea, M. A. Chin, E. Y. Lee, P. M. Petroff, and V. Narayanamurti, “Imaging and spectroscopy of single InAs self-assembled quantum dots using ballistic electron emission microscopy,” Phys. Rev. Lett., vol. 77, pp. 5268-5271, 1996
[9] K. Matsumoto, “SEM/AFM nano-oxidation process to room-temperature-operated single-electron transistor and other devices,” Proceedings of the IEEE, vol. 85, pp. 612-628, 1997
[10] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys., vol. 36, pp. 3770-3778, 1965
[11] M. Saitoh and T. Hiramoto, “Observation of current staircase due to large quantum level spacing in a silicon single-electron transistor with low parasitic resistance,” J. Appl. Phys., vol. 91, pp. 6725-6728, 2002
[12] M. Saitoh, N. Takahashi, H. Ishikuro, and T. Hiramoto, “Large electron addition energy above 250 meV in a silicon quantum dot in a single-electron transistor,” Jpn. J. Appl. Phys., vol. 40, pp. 2010-2012, 2001
[13] S. Lee, K. Miyaji, M. Kobayashi, and T. Hiramoto, “Extremely high flexibilities of coulomb blockade and negative differential conductance oscillations in room-temperature-operating silicon single hole transistor,” Appl. Phys. Lett., vol. 92, pp. 0735021-0735023, 2008
[14] M. Kobayashi and T. Hiramoto, “Experimental study on quantum confinement effects in silicon nanowire metal-oxide-semiconductor field-effect transistors and single-electron transistors,” J. Appl. Phys., vol. 103, pp. 0537091-0537096, 2008
[15] L. Zhuang, L. Guo, and S. Y. Chou, “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., vol. 72, pp. 1205-1207, 1998
[16] Y. Ono, Y. Takahashi, K. Yamazaki, M. Nagase, H. Namatsu, K. Kurihara, and K. Murase, “Fabrication method for IC-oriented Si single-electron transistors,” IEEE Trans. Electron Device, vol. 47, pp. 147-153, 2000
[17] Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., vol. 59, pp. 3168-3170, 1993
[18] S. H. Hsu, W. T. Lai, and P. W. Li, “High performance germanium quantum-dot single-hole transistors with self-aligned Electrodes,” 2007 International Conference on Solid-State Devices and Materials, Japan.
[19] V. P. Kesan, P. G. May, E. Bassous, and S. S. Iyer, “Integrated waveguide-photodetector using Si/SiGe multiple quantumwells for long wavelength applications,” 1990 International Conference on Electron Device Meeting, San Francisco
[20] E. Murakami, K. Nakagawa, A. Nishida, and M. Miyao, “Strain-controlled Si-Ge modulation-doped FET with ultrahigh holemobility,” IEEE. Electron Device Lett., vol.12, pp. 71-73, 1991
[21] T. J. King, J. R. Pfiester, J. D. Shott, J. P. McVittie, and K. C. Saraswat, “A polycrystalline-Si1-xGex-gate CMOS technology,” 1990 International Conference on Electron Device Meeting, San Francisco
[22] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, and M. J. Tsai, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett., vol. 83, pp. 4628-4630, 2003
[23] J. H. Wu and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum-dots formed by thermal oxidation of Si1-xGex-on-insulator,” Semicond. Sci. Technol., vol. 22, pp. S89-S92, 2007
[24] M. Cao, A. Wang, and K. C. Saraswat, “Low pressure chemical vapor deposition of Si1-xGex films on SiO2,” J. Electrochem. Soc., vol. 142, pp. 1566-1572, 1995
[25] D. Fathy, O. W. Holiand, and C. W. White, “Formation of epitaxial layers of Ge on Si substrates by Ge implantation and oxidation,” Appl. Phys. Lett., vol. 51, pp. 1337-1339, 1987
[26] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., vol. 59, pp. 1200-1202, 1991
[27] S. G. Park, W. S. Liu, and M. A. Nicolet, “Kinetics and mechanism of wet oxidation of GexSi1-x alloys,” J. Appl. Phys., vol. 75, pp. 1764-1770, 1994
[28] CRC Handbook of Chemistry and Physics, 70th end., edited by R. C. Weast, D. R. Lide, M. J. Astle, and W. H. Beyer (CRC, Boca Raton, 1989)
[29] C. Wagner, “Theoretical analysis of the diffusion process determining the oxidation rate of alloys,” J. Electrochem. Soc., vol. 99, pp. 369-380, 1952
[30] C. Wagner, “Oxidation of alloys involving noble metals,” J. Electrochem. Soc., vol. 103, pp. 571-580, 1956
[31] P. W. Li, David M. T. Kuo, W. M. Liao, and M. J. Tsai, “Optical and electronic properties of Ge quantum dots formed by selective oxidation of SiGe/Si-on-Insulator,” Jpn. J. Appl. Phys., vol. 43, pp. 7788-7792, 2004
[32] P. E. Hellberg, S. L. Zhang, F. M. d’Heurle, and C. S. Petersson, “Oxidation of silicon-germanium alloys. I. An experimental study,” J. Appl. Phys., vol. 82, pp. 5773-5778, 1997
[33] Y. Saito, “Crystal structure and habit of silicon and germanium particles grown in argon gas,” J. Cryst. Growth, vol. 47, pp. 61-72, 1979
[34] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., vol. 61, pp. 2187-2189, 1992
[35] D. B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, “Two-dimensional thermal oxidation of silicon-I. experiments,” IEEE Trans. Electron Device, vol. 34, pp.1008-1017, 1987
[36] D. B. Kao, J. P. McVittie, W. D. Nix, and K. C. Saraswat, “Two-dimensional thermal oxidation of silicon-II. modeling stress effects in wet oxides,” IEEE Trans. Electron Device, vol. 35, pp.25-37, 1988
[37] M. Nagase, A. Fujiwara, K. Yamazaki, Y. Takahashi, K. Murase, and K. Kurihara, “Si nanostructures formed by pattern-dependent oxidation,” Microelectronic engineering, vol. 41, pp. 527-530, 1998
[38] S. S. Tzeng and P. W. Li, “Enhanced 400-600 nm photoresponsponsivity of metal-oxide-semiconductor diodes with muti-stack germanium quantum dots,” Nanotechnology, vol. 19, pp. 235203-235208, 2008
[39] K. H. Chen, C. Y. Chien, W. T. Lai, and P. W. Li, “Precisely numbering and positioning Ge quantum dots in nanostructure by selective oxidation,” 2008 International Electron Device and Material Symposium