跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游勝傑
Sheng-Jie You
論文名稱: 併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究
The Nitrification and Denitrifying Phosphate Uptake Characteristics of A Combined Biofilm-Activated Sludge Process
指導教授: 歐陽嶠暉
Chaio-Fuei Ouyang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 151
中文關鍵詞: 脫硝除磷菌硝化菌生物營養鹽去除系統分子生物技術16S rDNA
外文關鍵詞: Denitrifying Phosphate Accumulating Organism
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 研究結果顯示TNCU-I程序無論是硝化穩定性、比硝化率、總氮去除率等各方面皆較A2O高,而TNCU-I模廠中RBC生物膜的確可補充好氧槽活性污泥在低SRT下所降低的硝化效果。此外TNCU-I活性污泥及RBC以及A2O活性污泥等三個樣品中皆可測到以Nistrosospira屬為主的亞硝酸菌以及以Nitrospira屬為主的硝酸菌,且各硝化菌的比例皆以TNCU-I活性污泥高於其他兩樣品。
    脫硝攝磷實驗結果發現TNCU-I反應槽中DNPAO對整體磷的攝取量大於47%,對整體脫硝貢獻度為42%。故DNPAO的存在對脫硝、攝磷均有相當大的貢獻。而批次實驗亦顯示攝磷速率隨內部PHA增加而加速,且污泥外部有殘留COD存在會對釋磷有利,而對攝磷不利,表示污泥若能在厭氧狀態下攝取越多的COD、釋出越多的正磷酸鹽、累積越多的PHA時,將使DNPAO或者non-DNPAO (不屬於DNPAO之單純磷蓄積菌)於其後續的缺氧/好氧狀態下越傾向於攝磷作用。另由實驗了解DNPAO需要大於2小時的水力停留時間才得以累積足夠的PHA量而不至於被non-DNPAO淘汰。因此設計TNCU-I反應槽之最佳化操作應為在SRT為10天且總水力停留時間為10小時下,厭氧、缺氧、好氧體積比為3:5:2,並於好氧槽上加裝1~2段RBC,使其上生物膜質量約略等於500mg/l之好氧槽MLSS,控制硝化液迴流比為3.5倍進流水流量,迴流污泥為0.5倍進流水流量,並使好氧槽DO為2.0mg/l。
    在TNCU-I活性污泥菌相中,除了有大量的硝化菌存在外,尚有大量極有可能為DNPAO之細菌。而RBC生物膜上之硝化菌存在的種類較為多樣,且亦有大量脫硝菌之存在,證實RBC生物膜的確可同時提供硝化及脫硝之功能,其絲狀菌亦多,這與RBC生物膜之膠羽結構較為緊密亦有關係。且無論是活性污泥或是RBC生物膜,其菌相均以Proteobacteria為主,其中又以β-subclass為最多,亦可發現γ-subclass及ε-subclass。CFB group亦同時存在於兩個污泥樣品中,但在活性污泥樣本方面以Cytophagales group為主,而RBC生物膜以Flavobacteria group為主。活性污泥樣品中未能測到gram positive細菌的存在,而RBC生物膜上可測到gram positive low G+C細菌。



    The results showed that the nitrification stability, specific nitrification rate and total nitrogen removal efficiency of TNCU-I process were all higher than A2O process. It was also proven that the RBC biofilm in the TNCU-I process could compensate for the overall nitrification performance when the TNCU-I process is operated at a low SRT. Additionally, the genera Nitrosospira and Nitrospira were identified as the predominant ammonia-oxidizer and nitrite-oxidizer among TNCU-I activated sludge, TNCU-I RBC biofilm and A2O activated sludge. It was also showed that the nitrifier abundance of TNCU-I activated sludge was higher than TNCU-I RBC biofilm and A2O activated sludge.
    The denitrification/phosphate-uptake experiments showed that the DNPAO contributed 47% of overall phosphate uptake and 42% of denitrification performance. Thus, the existence of DNPAO was advantageous for de-nitrogen and de-phosphate. The batch result also showed that the phosphate uptake rate increased with the increase of intracellular PHA of the sludge. Besides, the present of residue COD in the bulk solution enhance the phosphate uptake, but decrease the phosphate release performance. This implied that the DNPAO and non-DNPAO tend to take up more phosphate when it take up more COD, release more phosphate and accumulate more PHA in the anaerobic condition. Additionally, the DNPAO need more than 2 hrs anaerobic hydraulic retention time for competition the carbon with non-DNPAO.
    According to the reaction kinetics of the batch and pilot plant experiments, the optimum operation conditions of TNCU-I process are: SRT=10 days, HRT=10 hrs, the volume ratio of anaerobic:anoxic:aerobic is 3:5:2, 1-2 RBC were added in the aerobic tank, the recycled nitrification liquid and recycled sludge are 3.5 and 0.5 times of influent flow, and the DO is 2.0 mg/l.
    In the TNCU-I activated sludge, both nitrifier and DNPAO-like bacteria was identified. The nitrifier species in the RBC biofilm was more diverse, and a certain denitrifier was identified. This revealed that the RBC biofilm could contribute to nitrification and denitrification performance. Additionally, a lot of filamentous bacteria was also identified might be due to the dense biofilm structure. In both samples, the Proteobacteria was the predominant bacteria. The β-subclass, γ-subclass and ε-subclass were the common bacteria that was observed in both samples. The Cytophagales group and Flavobacteria group were also present in activated sludge and RBC biofilm, respectively. No gram positive bacteria was observed in activated sludge but in RBC biofilm.

    封面 中文摘要 英文摘要 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機 1.2 研究目的與內容 1.3 研究架構 第二章 文獻回顧 2.1 生物脫氮除磷的基本代謝 2.2 併同去除氮磷之程序發展與應用 2.3 分子生物技術於活性污泥微生物鑑定上之應用 第三章 實驗方法與步驟 3.1 反應槽及馴養基質 3.2 實驗設計 3.3 實驗方法與分析設備 第四章 TNCU-I程序硝化特性 4.1 TNCU-I程序連續操作處理效率及硝化特性 4.2 TNCU-I程序硝化特性批次實驗 4.3 TNCU-I程序硝化菌相特性 4.4 TNCU-I硝化特性結論 第五章 TNCU-I程序脫硝除磷特性 5.1 TNCU-I程序連續操作脫硝除磷現象 5.2 缺氧狀態下內、外部碳源濃度高低之脫硝除磷現象 5.3 缺氧、好氧狀態殘留碳源對脫硝除磷之影響 5.4 厭氧時間對脫硝除磷菌與單純除磷菌競爭探討 5.5 TNCU-I脫硝除磷特性初步討論 5.6 TNCU-I程序反應槽體積推估 第六章 TNCU-I程序活性污泥及RBC之菌相分析 6.1 活性污泥菌相分析 6.2 RBC菌相分析 6.3 TNCU-I程序菌相分析之初步結論 第七章 結論與建議 7.1 結論 7.2 建議 參考文獻 附錄

    1.Amann R. I., Stromley J, Devereux R., Key R., and Stahl D.A. (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58(2), 614-623.
    2.Amann R. I., Ludwig W., and Schleifer K. H. (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial Reviews, 59(1), 143-169.
    3.APHA (1989) Standard methods for the examination of water and wastewater, 17th Edition, American Public Health Association, Washington, D.C..
    4.Arsov R., Ribarova I., Topalova Y., and Mihailov G. (1995) On the kinetics of nitrification-denitrification biological excess phosphorus removal processes. Wat. Sci. Technol. 32(7), 95-102.
    5.Artan N., Tasli R., Ozgur N., and Orhon D. (1998) The fate of phosphate under anoxic conditions in biological nutrient removal activated-sludge systems. Biotechnology Letters. 20(11), 1085-1090.
    6.Barak Y. and Vanrijn J. (2000) A typical polyphosphate accumulation by the denitrifying bacterium Paracoccus denitrificans. Appl. Environ. Microbiol., 66(3), 1209-1212.
    7.Barker S. P., and Dold L. P. (1996) Denitrification behavior in biological excess phosphorus removal activated sludge system. Wat. Res. 30(4), 769-780.
    8.Blackall L.L., Burrell P. C., Gwilliam H., Bradford D., Bond P. L. and Hugenholtz P. (1998) The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. Wat. Sci. Technol. 37(4-5), 451-454.
    9.Bond P. L., Hugenholtz P., Keller J., and Blackall L. L. (1995) Bacterial community structures of phosphate-removing and non-phosphate removing activated Sludge from sequencing batch reactors. Appl. Environ. Microbiol., 61(5), 1910-1916.
    10.Bortone G., Saltarelli R., Alonso V., Sorm R., Wanner J., and Tiche A. (1996) Biological anoxic phosphorus removal-the Dephanox process. Wat. Sci. Technol. 34(1-2), 119-128.
    11.Brodisch K.E. U. (1985) Interaction of different groups of microorganisms in biological phosphate removal. Wat. Sci. Technol. 17, 89-97.
    12.Buchan L. (1983) Possible biological mechanism of phosphorus removal. Wat. Sci. Technol. 15(3-4), 87-103.
    13.Bux F. and Kasan H. C. (1994) A microbiological survey of ten activated sludge plants. Water S. A. 20(1), 61-72.
    14.Carlsson H., Aspegren H., and Hilmer A. (1996) Interactions between wastewater quality and Phosphorus release in the anaerobic reactor of the EBPR process. Wat. Res. 30(6), 1517-1527.
    15.Carucci A., Kühni M., Brun R., Carucci G., Koch G., Majone M., and Siegrist H. (1999) Microbial competition for the organic substrates and its impact on EBPR systems under conditions of changing feed. Wat. Sci. Technol. 39(1), 75-85.
    16.Cech J. S. and Hartman P. (1993) Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system. Wat. Res. 27(7), 1219-1225.
    17.Chuang, S. H., Ouyang, C. F. (1996a) Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition. Wat. Res., 30(12), 2961-2968
    18.Chuang, S. H., Ouyang, C. F. and Wang, Y. B. (1996b) The kinetic behaviors of simultaneous phosphorus release and denitrification on sludge for BNR processes, J. Chine. Instit. Eng., 19(5), 575-583.
    19.Chuang, S. H., Ouyang, C. F., Yuang, H. C. and You, S. J. (1997) Effects of SRT and DO on nutrient removal in a combined AS-Biofilm process. Wat. Sci. Technol. 36(12), 19-27.
    20.Chuang, S. H., Ouyang, C. F. and Yuang, H. C. and You, S. J. (1998) Phosphorus and polyhydroxyalkanoates variation in a combined process with activated sludge and Biofilm. Wat. Sci. Technol. 37(4-5), 593-597.
    21.Chung J. C. and Strom P. F. (1997) Filmentous bacteria and protozoa found in the rotating biological contactor. J. Environ. Sci. Heal. A. 32(3), 671-686.
    22.Copp J. B. and Murphy K. L. (1995) Estimation of the active nitrifying biomass in activated sludge. Wat. Res. 29(8), 1855-1862
    23.Cloete T. E. and Steyn P. L.(1988)A combined membrane filter-immunofluorescent technique for the in situ identification and enumeration of Acinetobacter in activated sludge. Wat. Res. 22(8), 961-969.
    24.Curtis T. P. and Craine N. G. (1997) The comparison of the diversity of activated sludge plants. 2nd Internat. Conf. on Microorg. in Activated Sludge and Biofilm Processes. 65-72.
    25.Deinema M. H., Loosdrecht M. van, and Scholten A. (1985) Some physiological characteristics of Acinetobacter spp. accumulating large amount of phosphate. Wat. Sci. Technol. 17, 119-125.
    26.Ferris M. J., Muyzer G. and Ward D. M. (1996) Denaturing gradient gel-electrophoresis profiles of 16S ribosomal-RNA-defined populations inhabiting a hot-spring microbial mat community. Appl. Environ. Microbiol. 62(2), 340-346.
    27.Ferris M. J. and Ward D. M. (1997) Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 63(4), 1375-1381.
    28.Filipe C. D. M. and Daigger G. T. (1999) Evaluation of the capacity of phosphorus-accumulating organisms to use nitrate and oxygen as final electron-acceptors─a theoretical-study on population-dynamics. Wat. Environ. Res. 71(6), 1140-1150.
    29.Fuhs G. W. and Chen M. (1975) Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microb. Ecol. 2(2), 119-138.
    30.Galvan A., Urbina P. and Decastro F. (2000) Characterization of filamentous microorganisms in rotating biological contactor biofilms of wastewater treatment plants. Bioprocess Eng., 22(3), 257-260.
    31.Gerber A., Mostert E. S., Winter C. T., and Villiers R. H. (1987) Interactions between phosphate, nitrate and organic substrate in biological nutrient removal processes. Wat. Sci. Technol. 19(1-2), 183-194.
    32.Goel R., Mino T., Satoh H., and Matsuo T. (1999) Modeling hydrolysis processes considering intracellular storage. Wat. Sci. Technol. 39(1), 97-105.
    33.Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C. and Marais, G. v. R. (1995) Activated sludge model No.2, IAWQ scientific and technical report, IAWQ, London.
    34.Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M. C., Marais, G. v. R. and van Loosdrecht M. C. M. (1999) Activated sludge model No.2d, Wat. Sci. Technol. 39(1), 165-182.
    35.Heuer H., Krsek M., Barker P., Smalla K. and Wellington E. M. H. (1997) Analysis of Actinomycete communities by specific amplification of genes encoding 16S ribosomal-RNA and gel electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63(8), 3222-3241.
    36.Hiraishi A. and Kitamura H. (1984) Differences in phototrophic growth on high phosphate concentrations among Rhodopseudomonas species. J. Ferment. Technol. 62(3), 293-296.
    37.Hiraishi A. and Kitamura H. (1984) Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull. Jpn. Soc. Sci. Fish. 50, 1929-1937.
    38.Hiraishi A. (1988) Respiratory quinone profiles as tools for identifying different bacterial populations in activated sludge. J. Gen. Appl. Microbiol., 34(1), 39-56.
    39.Hiraishi A., Masumune K., and Kitamura H. (1989) Characterization of the bacterial population structure in an anaerobic-aerobic activated sludge system on the basis of respiratory quinone profiles. Appl. Environ. Microbiol. 55(4), 897-901.
    40.Holt G. J., Krieg R. N., Sneath H. P., Staley T. J., and Williams T. S. (1994) Bergey’s manual of determinative bacteriology. 9th Edition, Williams and Wilkins, Maryland.
    41.Jankins D.(1998)From TSS to FISH (and Beyond)─the Past, Present and Future of Activated Sludge Population Dynamics. Microbial Community and Functions in Wastewater Treatment Processes. COE Project, Department of Urban Engineering, School of Engineering, The University of Tokyo. 11-30.
    42.Juretschko S., Timmermann G., Schmid M., Schleifer K. H., Pommereningroser A., Koops H. P. and Wagner M. (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated-sludge─Nitrosococcus Mobilis and Nitrospira-like bacteria as dominant population. Appl. Environ. Microbiol. 64(8), 3042-3051
    43.Kerrn-Jespersen P. J. and Henze M. (1993) Biological phosphorus uptake under anoxic and aerobic condition. Wat. Res. 27(4), 617-624.
    44.Kowalchuk G. A., Stephen J. R., de Boer W., Prosser J. I., Embley T. M., and Woldendrop J. W., (1997) Analysis of ammonia-oxidizing bacteria of the β-subdivision of the class proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol. 63(4), 1489-1497.
    45.Kuba T., Wachtmeister A., van Loosdrecht M. C. M. and Heijnen J. J. (1994) Effect of nitrate on phosphorus release in biological phosphorus removal system. Wat. Sci. Technol. 30(6), 263-269.
    46.Kuba T., van Loosdrecht M. C. M. and Heijnen J. J. (1996) Effect of cyclic oxygen exposure on the activity of denitrifying phosphorus removing bacteria. Wat. Sci. Technol. 34(1-2), 33-40.
    47.Kuba T., van Loosdrecht M. C. M. and Heijnen J. J. (1997a) Biological dephosphatation by activated sludge under denitrifying conditions: pH influence and occurrence of denitrifying dephosphatation in a full-scale waste water treatment plant. Wat. Sci. Technol. 36(12), 75-82.
    48.Kuba T., van Loosdrecht M. C. M., Brandse A. F., and Heijnen J. J. (1997b) Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Wat. Res. 31(4), 777-786.
    49.Liu W. T., Mino T. Nakamura K. and Matsuo T. (1996) Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Wat. Res. 30(1), 75-82.
    50.Liu W. T., Marsh T. L. Cheng H. and Forney L. J. (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63(11), 4516-4522.
    51.Liu W. T., Marsh T. L., and Forney L. J. (1998) Determination of the microbial diversity of anaerobic-aerobic activated sludge by a novel molecular biological technique. Wat. Sci. Technol., 37(3), 417-422.
    52.Manz W., Wagner M., Amann R. and Schleifer K. H. (1994) In situ characterization of the microbial consortia active in two wastewater treatment plants. Wat. Res., 28(8), 1715-1723.
    53.Matsuo Y. (1994) Effect of the anaerobic SRT on enhanced biological phosphorus removal. Wat. Sci. Technol. 28, 127-136.
    54.Metcalf & Eddy (1991) Wastewater Engineering----treatment, disposal, and reuse. McGraw-Hill, Inc.
    55.Meinhold J., Pedersen H., Arnold E., Isaacs S., and Henze M. (1998) Effect of continuous addition of an organic substrate to the anoxic phase on biological phosphorus removal. Wat. Sci. Technol. 38(1), 97-105.
    56.Meinhold J., Filipe D. M. C., Diagger T. G., and Isaacs S. (1999) Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Wat. Sci. Technol. 39(1), 31-42.
    57.Merzouki M., Delgenes J. P., Bernet N., Moletta R. and Benlemlih M. (1999a) Polyphosphate-accumulating and denitrifying bacteria isolated from anaerobic-anoxic and anaerobic-aerobic sequencing batch reactors. Current Microbiology. 38(1), 9-17.
    58.Merzouki M., Bernet N., Delgenes J. P., Moletta R. and Benlemlih M. (1999b) Kinetic-behavior of some polyphosphate-accumulating bacteria isolates in the presence of nitrate and oxygen. Current Microbiology. 38(5), 300-308.
    59.Muyzer G., Waal E. C., and Uitterlinden A. G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59(3), 695-700.
    60.Muyzer G. and Kornelia S. (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73, 127-141.
    61.Myers R. M., Fischer S. G., Lerman L. S., and Maniatis T. (1985) Near all single base substitutions in DNA fragments joined to a GC clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acid Res. 13(9), 3131-3145.
    62.Nielsen T. A., Liu W. T., Filipe C., Grady L., Molin S., and Stahl A. D. (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl. Environ. Microbiol. 65(3), 1251-1258.
    63.Oa S. W. and Choi E. (1997) Phosphorus removal from nightsoil with sequencing batch reactor (SBR). Wat. Sci. Technol. 36, 55-61.
    64.Olsen G. J. and Woese C. R. (1993) Ribosomal RNA: A key to phylogeny. FASEB, 7(1), 113-123.
    65.Østgaard K., Christensson M., Lie E., Jönsson K., and Welander T. (1997) Anoxic biological phosphorus removal in a full-scale UCT process. Wat. Res. 31(11), 2719-2726.
    66.Randall, C. W., J. L. Barnard and H. D. Stensel, (1992) Design and retrofit of waste-water treatment plants for biological nutrient removal. Technomic Publishing Company, Inc., Pennsylvania.
    67.Reddy, M., (1991) The concept of phosphorus storage capability and its implications for design of systems for enhanced biological uptake of phosphate. Wat. Sci. Technol., 23(4-6), 577-584.
    68.Saiki R. K., Gelfand D. H., Stoffel S. J. Higuchi R., Horn G. T., Mullis K. B., and Erlich H. A. (1988) Primer-directed enzymatic amplification of DNA with thermostable DNA Polymerase. Science, 239(4839), 487-491.
    69.Santegoeds C. M., Nold S. C., and de Beer D. (1996) Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring Cyanobacterial mat. Appl. Environ. Microbiol. 62(11), 3922-3928.
    70.Sheffield V. C., Beck J. S., Stone E. M. and Myers R. M. (1992) A simple and efficient method for attachment of a 40-Base pair, GC-rich sequence to PCR amplified DNA. BioTechniques, 12(3), 386-387.
    71.Schuppler M. Mertens F. Schon G and Gobel U. B. (1995) Molecular characterization of nocardiform actinomycetes in activated sludge by 16S rRNA analysis. Microbiology 141(FEB), 513-521.
    72.Shin Y. K., Hiraishi A. and Sugiyama J. (1993) Molecular systematics of the genus Zoogloea and emendation of the genus. Int. J. Syst. Bateriol. 43(4), 826-831.
    73.Siefert E. Irgens R. L. and Pfennig. (1978) Phototrophic purple and green bacteria in a sewage treatment plant. Appl. Environ. Microbiol. 35, 38-44.
    74.Snaidr J., Amman R., Huber I., Ludwig W. and Schleifer K. H. (1997) Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 63(7), 2844-2896.
    75.Šorm R., Bortone G., Saltarelli R., Jenícek P., Wanner J., and Tilche A. (1996) Phosphate uptake under anoxic conditions and fixed-film nitrification in nutrient removal activated sludge system. Wat. Res. 30(7), 1573-1584.
    76.Šorm R., Bortone G., Wanner J., and Tilche A. (1998) Behavior of activated sludge from a system with anoxic phosphate uptake. Wat. Sci. Technol. 37(4-5), 563-566.
    77.Stensel H. D., and Sedlak R. I. (1991) Phosphorus and nitrogen removal from municipal wastewater─principles and practice. Lewis Publishers. New York. 141-163.
    78.Su J. L and Ouyang C. F. (1996) Nutrient removal using a combined process with activated sludge and fixed biofilm. Wat. Sci. Technol. 34(1-2), 477-486.
    79.van Loosdrecht M. C. M., Pot M. A., and Heijnen J. J. (1997) Importance of bacterial storage polymers in bioprocesses. Wat. Sci. Technol. 35(1), 41-47.
    80.van Niekerk A. M. Jenkins D and Richard M. D. (1987) The competitive growth of Zoogloea ramigera and Type 021N in activated sludge and pure culture─a model for low F:M bulking. J. Water Pollut. Control Fed. 59(5), 262-268.
    81.Vlekke G. J. F., Comeau Y. and Oldham W. K. (1988) Biological phosphate removal from wastewater with oxygen or nitrate in sequencing batch reactor. Environ. Technol Lett. 9(8), 791-796.
    82.Wachtmeister A., Kuba T., van Loosdrecht M. C. M. and Heijnen J. J. (1997) A sludge characterization assay for aerobic and denitrifying phosphorus removing sludge. Wat. Res. 31(3), 471-478.
    83.Wagner M., Amann R., Lemmer H. and Schleifer K. H.(1993)Probing activated sludge with oligonucleotides specific for Proteobacteria inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59(5), 1520-1525.
    84.Wagner M., Erhart R., Manz W., Amann R., Lemmer H. D. and Schleifer K. H.(1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60(3), 792-800.
    85.Wanner J. and Grau P.(1989) Identification of filmentous microorganisms from activated sludge: A compromise between wishes, needs and possibilities. Wat. Res. 23(7), 883-891.
    86.You S. J., Ouyang C. F., Liu W. T. and Lin S. F. (2000a) Characterization of the microbial diversity in a biotreatment process using non-cultured based methods. Wat. Sci. Technol., 42(3-4), 143-148.
    87.You S. J., Lin S. F., Liu W. T. and Ouyang C. F. (2000b) The Characteristic of Phosphorus Uptake/Release of A Nutrient Removal Process Under Anoxic Condition. J..Chine. Instit. Environ. Eng., 10(3), p.249-254.
    88.You S. J., Liu W.T., Onuki M., Mino T., Satoh H., Matsuo T., and Ouyang C.F. (2000c) Identification of predominant microbial populations in a non-phosphate removal anaerobic aerobic bioreactor fed with fermented products. In: Matsuo T., Hanaki K., Takizawa S., and Satoh H. (Editors), Advances in water and wastewater treatment technology----molecular technology, nutrient removal, sludge reduction, and environmental health. Elsevier Science, 2001.
    89.You S. J., Ouyang C. F., Lin S. F., Chuang S. H. and Hsu C. L. (2001a) Anoxic biological phosphorus uptake/release with high/low intracellular polymer. J. Environ. Eng., ASCE. (Accepted)
    90.You S. J., Ouyang C. F., Chuang S. H. (2001b) The polyhydroxyalkanoates characteristics of denitrifying and non-denitrifying phosphate accumulating organisms. J. Environ. Sci. Heal. A. (Accepted)
    91.You S. J., Ouyang C. F., Shen Y. J. and Hsu C. L. (2001c) The influence of anaerobic reaction time on the fraction of denitrifying phosphate accumulating organism in BNR processes. J. Chine. Instit. Eng., 24. (Accepted)
    92.莊順興 (1997) 脫氮除磷代謝模式與反應動力之研究,博士論文,國立中央大學環境工程研究所。
    93.林淑芬 (1999) 併同活性污泥及生物膜營養鹽去除程序中脫氮除磷反應特性之探討,碩士論文,國立中央大學環境工程研究所。
    94.沈裕智 (2000) 變動負荷特性與殘留基質對缺氧釋磷攝磷現象之探討,碩士論文,國立中央大學環境工程研究所。

    QR CODE
    :::