跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳世文
Shr-Wen Chen
論文名稱: 奈米非晶態CoNiB雙金屬觸媒的製備與氫化探討
指導教授: 陳吟足
Yin-Zu Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 99
中文關鍵詞: 觸媒
外文關鍵詞: catalyst
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採化學還原法製備CoNiB觸媒,並引入水溶性高分子PVP,製備PVP-CoNiB觸媒。藉液相丁醛氫化模式反應有系統探討CoNiB及PVP-CoNiB觸媒製備變因,以ICP、BET、TEM、XRD、DSC、XPS瞭解其物理性質,藉糠醛(含呋喃環外羰基及環內烯基鍵)、巴豆醛(含共軛烯基-羰基鍵)及檸檬醛(含共軛烯基-羰基鍵及一孤立烯基鍵)的選擇性氫化反應瞭解雙金屬觸媒之催化特性,並與活性及選擇性都優於倫尼金屬之NiB與CoB觸媒比較。
    CoNiB與PVP-CoNiB觸媒最佳製備條件為以醋酸鹽類為前驅鹽,金屬莫耳比例Co/Ni = 5/5,硼氫化鈉水溶液進料速率2.6 ml/min,水溶性高分子PVP添加莫耳比例為PVP/Metal = 2~5 。
    CoNiB雙金屬觸媒粒徑及粒徑分佈(3.8~5.6 nm)都比NiB(15~50 nm)及CoB(5.5~9.4 nm)觸媒小,添加PVP高分子穩定劑能讓PVP-CoNiB觸媒的粒徑更小更均一。CoNiB雙金屬觸媒整體組成中金屬對硼之元素比值,與NiB及CoB單金屬觸媒比值相近,引入高分子PVP並不影響PVP-CoNiB組成中金屬對硼之元素比值。CoNiB與PVP-CoNiB雙金屬觸媒組成分佈均勻,表面Co/Ni比例與整體組成相近。觸媒經不同溫度熱處理之XRD分析與DSC晶化分析發現,CoNiB並非為CoB與NiB的物理混合物。CoNiB、PVP-CoNiB皆為非晶態觸媒,PVP-CoNiB觸媒熱穩定性最佳,CoNiB觸媒與CoB觸媒次之,NiB觸媒最差。
    以最佳比例之CoNiB(5/5)觸媒於丁醛、巴豆醛、糠醛及檸檬醛等液相氫化反應,活性皆優於NiB、CoB觸媒,且引入高分子PVP,以莫耳比PVP/Me = 2~5即達保護觸媒效果,避免顆粒聚集成長,製
    得顆粒更小更均一的PVP-CoNiB觸媒,活性優於CoNiB觸媒。
    丁醛與糠醛氫化反應,皆屬單一官能基C=O鍵的氫化。CoNiB觸媒活性為NiB及CoB觸媒的2~3倍,PVP-CoNiB觸媒又為CoNiB觸媒的1.7~2倍。糠醛氫化反應中,PVP-CoNiB觸媒對糠醇選擇率更高於CoNiB觸媒,幾無開環產物。
    巴豆醛及檸檬醛選擇性氫化反應,皆屬共軛C=C/C=O鍵的選擇性氫化。於相同反應條件下,CoB觸媒活性不佳,CoNiB及PVP-CoNiB觸媒的催化特性較偏向NiB觸媒,都優先選擇氫化共軛C=C/C=O中的C=C鍵成丁醛及香茅醛,CoNiB觸媒活性為NiB觸媒的2倍,PVP-CoNiB觸媒又為CoNiB觸媒的1.6~1.8倍以上。
    檸檬醛氫化反應,反應溶劑影響觸媒活性也影響產物的產率,以環己烷為溶劑,對香茅醛產率較高,但活性不佳;以甲醇或乙醇為溶劑,活性較佳,但對香茅醛產率較低。若以香茅醛為主要產物,則以乙醇為溶劑,在低溫(30℃)下進行反應可獲得香茅醛最大產率(86%);若以香茅醛與香茅醇為主要產物,則以甲醇為溶劑,在短時間內即可獲得最大香茅醛與香茅醇產率(97%)。


    The PVP-stabilized CoNiB catalysts were prepared using the chemical reduction method with NaBH4, dissolving the water-soluble polymer of polyvinylpyrrolidone (PVP) in the precursor salt solution as a protective reagent. The PVP-CoNiB catalysts were characterized and examined for their catalysis on the hydrogenation of furfural, crotonaldehyde and citral. PVP polymer could adsorb on the nano-particles of CoNiB via a weak coordination bonding and stabilize it; the molecular weight of PVP about 10,000 was suitable, and the optimal quantity of PVP (PVP/Ni+Co) in the salt solution for preparing catalysts was around 2~10. The PVP-CoNiB samples were characterized by XRD as an amorphous structure and by TEM with a particle size distribution in the range of 3–5 nm. On catalysis, the PVP-CoNiB catalyst was significantly more active and slightly more selective than NiB for hydrogenating furfural to furfuryl alcohol and crotonaldehyde to butyraldehyde. A good yield of citronellal about 87% could be obtained by reducing citral in ethanol at a low reaction temperature of 30oC over the PVP-CoNiB catalyst.

    第一章 緒論 1 第二章 文獻回顧 3 2-1 金屬-硼奈米合金觸媒 3 2-1-1 物理性質 4 2-1-2 催化特性 13 2-1-2(a) NiB催化性質 13 2-1-2(b) CoB催化性質 14 2-1-2(c) CoNiB催化性質 16 2-2 PVP穩定化金屬奈米微粒 17 2-3 PVP穩定化雙金屬奈米微粒 22 2-4 不飽和醛選擇性氫化反應 23 2-4-1 糠醛 23 2-4-2 巴豆醛 25 2-4-3 檸檬醛 28 第三章 實驗方法與設備 31 3-1 觸媒製備 31 3-1-1 CoNiB觸媒與PVP-CoNiB觸媒之製備 31 3-2 觸媒性質鑑定 33 3-2-1 元素組成分析 33 3-2-2 X-射線繞射分析 33 3-2-3 比表面積測定 34 3-2-4 示差掃描熱量測定 34 3-2-5 X-射線光電子光譜 35 3-2-5 穿透式電子顯微鏡 36 3-3 反應活性測定 36 3-4 實驗藥品及氣體 40 第四章 結果與討論 43 4-1-1 CoNiB觸媒製備 43 4-1-2 PVP-CoNiB觸媒之製 43 4-1-3 CoNiB觸媒與PVP-CoNiB觸媒之ICP組成分析 48 4-1-4 CoNiB觸媒與PVP-CoNiB觸媒之BET鑑定 48 4-1-5 CoNiB與PVP-CoNiB觸媒之TEM顯微影像分析 48 4-1-6 CoNiB及PVP-CoNiB觸媒之X-射線繞射分析 53 4-1-7 CoNiB觸媒與PVP-CoNiB觸媒之DSC熱穩定分析 53 4-1-8 CoNiB觸媒與PVP-CoNiB觸媒之表面分析 58 4-2 奈米非晶態CoNiB與PVP-CoNiB觸媒催化性質的探討 65 4-2-1 丁醛與糠醛氫化 65 4-2-2 巴豆醛選擇性氫化 70 4-2-3 檸檬醛選擇性氫化 75 第六章 結論 87 總結 89 參考文獻 90

    1. W. J. Wang, H. X. Li, and J. F. Deng, “Boron Role on Sulfur Resist-ance by Carbon Disulfide in Cyclopentadiene Hydrogenation”, Appl. Catal. A, 203 (2000) 293.
    2. B. J. Liaw, S. J. Chiang, C. H. Tsai,and Y. Z. Chen, “Preparation and Catalysis of Polymer-stabilized NiB Catalysts onHydrogenation of Carbonyl and Olefinic groups”, Appl. Catal.A,284 (2005) 239
    3. H. Lia, Y. Wua, J. Zhanga, W. Daib,and M. Qiaob, “Liquid Phase Acetonitrile Hydrogenation to Ethylamine over a Highly Active and Selective Ni–Co–B Amorphous Alloy Catalyst”, Appl. Catal.A, 275 (2004) 199
    4. H. C. Brown, and C. A. Brown, “The Reaction of Sodium Boro-hydride with Nickel Acetate in Aqueous Solution ⎯A Convenient Synthesis of an Active Nickel Hydrogenation Catalyst of Low Isomerizing Tendency”, J. Am. Chem. Soc., 85 (1963) 1003.
    5. 吳忠勳, “硼化鈷觸媒催化性質之研究”, 國立中央大學化學工程研究所碩士論文 (1989).
    6. H. C. Brown, and C. A. Brown, “The Reaction of Sodium Borohydride with Nickel Acetate in Ethanol Solution ⎯ A HighlySelective Nickel Hydrogenation Catalyst”, J. Am. Chem. Soc., 85 (1963) 1005.
    7. 陳吟足, “硼化鎳觸媒的催化性質研究”, 國立台灣大學化學工程研究所博士論文 (1985).
    8. M. H. Rei, L. L. Sheu, and Y. Z. Chen, “Nickel Boride Catalyst in Organic Synthesis. I: A New Ferromagnetic Catalyst from the
    Diborane Reduction of Nickel Acetate”, Appl. Catal., 23 (1986) 281.
    9. N. N. Mal’tseva, Z. K. Sterlyadkina, and V. I. Mikheeva, Chem. Abstr., 65 (1966) 1751f.
    10. 陳懿, 范以寧, 沈儉一, 胡徵, “非晶態合金超細微粒催化劑製備﹑表徵和催化作用的研究”, 超細微粒材料與觸媒研討會論文集, (1996) 1.
    11. J. S, A. I, and T. M, “The Effect of Reaction Condition on Composition and Properties of Ultrafine Amorphous Powders in (Fe, Co, Ni)-B Systems Prepared by Chemical Reduction”, Metal. Trans. A, 22A (1991) 2125.
    12. H. Li, H. X. Li, W. L. Dai, W. Wang, Z. Fang, and J. F. Deng, “XPS Studies on Surface Electronic Characteristics of Ni-B and Ni-P Amorphous Alloy and Its Correlation on Their Catalytic Proper-ties”, Appl. Surf. Sci., 152 (1999) 25.
    13. Y. Z. Chen, and K. J. Wu, “Hydrogenation Activity and Selectivity of Cobalt Borides”, Appl. Catal., 78 (1991) 185.
    14. J. Deng, J. Yang, S. Sheng, H. Chen, and G. Xiong, “The Study of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as Catalysts”, J. Catal., 150 (1994) 434.
    15. W. J. Wang, M. H. Qiao, J. Yang, S. H. Xie, and J. F. Deng, “Selective Hydrogenation of Cyclopentadiene to Cyclopentene over an Amorphous NiB/SiO2 Catalyst”, Appl. Catal. A, 163 (1997) 101.
    16. Y. Okamoto, Y. Nitta, I. Imanaka, and S. Teranishi, “Surface Characterization of Nickel Boride and NickelPhosphide Catalysts by X-ray Photoelectron Spectroscopy (Part I)”, J. Chem. Soc. Faraday I., 75 (1979) 2027.
    17. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State, Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions”, J. Chem. Soc. Faraday Trans. I, 76 (1980) 998.
    18. Y. Okamoto, Y. Nitta, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions III. Electronic and Catalytic Propertiesof Nickel Catalysts”, J. Catal., 64 (1980) 397.
    19. Y. Okamoto, K. Fukino, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions IV. Electronic Effects on the Selectivity in the Hydrogenation of 1,3-Butadiene”, J. Catal., 74 (1982) 173.
    20. Y. Okamoto, E. Matsunaga, T. Imanaka, and S. Teranishi, “Surface State and Catalytic Activity and Selectivity of Nickel Catalysts in Hydrogenation Reactions V. Electronic Effects on Methanation of CO and CO2”, J. Catal., 74 (1982) 183.
    21. A. H. Uken, and C. H. Bartholomew, “Borided Metal Catalysts in Methanation of Carbon Monoxide I. Initial Activity and Conversion-Temperature Behavior of Unsupported Catalysts”, J. Catal., 65 (1980) 402.
    22. S. H. Xie, H. X. Li, H. Li, and J. F. Deng, “Selective Hydrogenation of Stearonitrile over Ni-B/SiO2 Amorphous Catalysts in Compar-ison with Other Ni-Based Catalysts”, Appl. Catal. A, 189 (1999) 45.
    23. H. Li, X. Li, and J. F. Deng, “Influence on the Reduction Degree of Ni-B/SiO2 Amorphous Catalyst and Its Role in Selective Hydroge-nation of Acrylonitrile”, Appl. Catal. A, 193 (2000) 9
    24. C. A. Brown, and V. K. Ahuja, “Catalytic Hydrogenation. VI. The Reaction of Sodium Borohydride with Nickel Salts in
    Ethanol Solution. P-2 Nickel, a Highly Convenient, New, Selective Hydrogenation Catalyst with Great Sensitivity to Substrate Structure”, J. Org. Chem., 38 (1973) 2226.
    25. Z. G. Fang, B. R. Shen, J. Lu, K. N. Fan, and J. F. Deng, “DFT Study of Electron Transfer between B and Ni in Ni-B Amorphous Alloy”, ACTA CHIMICA SINIA, 57 (1999) 894.
    26. Y. Nitta, T. Imanaka, and S. Teranish, “Hydrogenation Activity and Selectivity of Cobalt Boride and Cobalt Nickel Binary Catalysts”, Bull. Chem. Soc. Jpn., 53 (1980) 3154.
    27. 陳義忠, “對氯硝基苯於硼化鎳觸媒之選擇性氫化反應”, 國立中央大學化學工程研究所碩士論文 (1993).
    28. 楊盛威, “硼化鎳觸媒於苯乙酮及二苯甲酮選擇性氫化反應之研究”, 國立中央大學化學工程研究所碩士論文 (1994).
    29. Y. Z. Chen, B. J. Liaw, and S. J. Chiang, “Selective Hydrogenation of Citral over Amorphous NiB and CoB Nano-Catalysts” , Appl. Catal. A, 284 (2005) 97.
    30. 吳坤哲, “硼化鈷系列觸媒對選擇性氫化反應的探討”, 國立中央大學化學工程研究所碩士論文 (1990).
    31. 魏水文, “促進劑對硼化鈷觸媒於選擇性氫化反應之影響”, 國立中央大學化學工程研究所碩士論文 (1992).
    32. 楊長峰, “苯胺氫化製程觸媒之改進”, 國立中央大學化學工程研究所碩士論文 (1996).
    33. Z. B. Yu, M. H. Qiao, H. X. Li, and J. F. Deng, “Preparation of Amorphous Ni-Co-B Alloys and the Effect of Cobalt on Their Hydrogenation Activity”, Appl. Catal. A, 163 (1997) 1.
    34 H. Li, X. Chen, M. Wang and Y. Xu, “Selective Hydrogenation of
    Cinnamaldehyde to Cinnamyl Alcohol over an Mltrafine Co-B
    Amorphous Alloy Catalyst”, Appl. Catal. A, 225 (2002) 117.
    35. H. Wang, Z. Yu, H. Chen, J. Yang and J. F. Deng, “High Activity Ultrfaine Ni-Co-B Amorphous Alloy Powder for the Hydrogenation of Benzene”, Appl. Catal. A, 129 (1995) 143
    36. Z. B. Yu, M. H. Qiao, H. X. Li and J. F. Deng, “Preparation of Amorphous Ni-Co-B Alloy and the Effect of Cobalt on their Hydrogenation Activity”, Appl. Catal. A, 163 (1997) 1.
    37 張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局 (2002).
    38. H. P. Choo, K. Y. Liew, W. A. K. Mahmood, and H. Liu, “Morphology and Crystalline Structure of Polymer Stabilized Pd Nanoparticles”, J. Mater. Chem., 11 (2001) 2906.
    39. W. Yu, H. Liu, M. Liu, and Q. Tao, “Selective Hydrogenation of α,β-Unsaturated Aldehyde to α,β-Unsaturated Alcohol over Polymer-Stabilized Platinum Colloid and the Promotion Effect of Metal Cations ”, J. Mol. Catal. A, 138 (1999) 273.
    40. X. Yang, and H. Liu, “Influence of Metal Ions on Hydrogenation of o-Chloronitrobenzene over Platinum Colloidal Clusters”, Appl. Catal. A, 164 (1997) 197.
    41. N. Toshima, Y. Shiraishi, and T. Teranishi, “Effect of Addition Metal Ions on Catalyses of Polymer-Stabilized Metal Nanocluster”, J. Mol. Catal. A, 177 (2001) 139.
    42. Y. Shiraishi, M. Nakayama, E. Takagi, T. Tominaga, and N. Toshima, “Effect of Quantity of Polymer on Catalysis and Superatructure Size of Polymer-Preotected Pt Nanoclusters”, Inorg. Chim. Acta, 300-302 (2000) 964.
    43. T. Teranishi, and M. Miyake,“Size Control of Palladium
    Nanoparticles and Their Crystal Structure’’, Chem. Mater., 10 (1998) 594.
    44. K. Kralik, and A. Biffis, “Catalysis by Metal Nanoparticles Supported on Functional Organic Polymers’’, J. Mol. Catal. A, 177 (2001) 113.
    45. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loy, J. F. Deng, and G. Q. Xu, “Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone)”, Langmuir, 12 (1996) 909.
    46. H. Hirai, N. Yakura, Y. Seta, and S. Hodoshima, “ Characterization of Palladium Nanoparticles Protected with Polymer as Hydrog-enation Catalyst”, React. Func. Polym., 37 (1998) 121.
    47. A. B. R. Mayer, and J. E. Mark,“Colloidal Gold Nanoparticles Pro tected by Water-Soluble Homopolymers and Random Copolymer”,Eur. Polym. J., 34 (1998) 103.
    48. T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake. “Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophporetic Deposition”, J . Phy . Chem . B , 103 (1999) 3818.
    49. X. Yan, H. Liu, and K. Yong Liew,“Size Control of Polymer-Stabilized Ruthenium Nanoparticles by Polyol Reduction”, J. Mater. Chem., 11 (2001) 3387.
    50. H. P. Choo, K. Y. Liew, and H. Liu,“Factors Affecting the Size of Polymer Stabilized Pd Nanoparticles ”, J. Mater. Chem., 12 (2002) 934.
    51. W. Tu, and H. Liu, “Rapid Synthesis of Nanoscale Collidal Metal Clusters by Microwave Irradiation”, J. Mater. Chem., 10 (2000) 2207
    52. W. Yu, M. Liu, H. Liu, X. Ma, and Z. Liu, “Preparation,
    Characterization, and Catalytic Properties of Polymer-Stabilized Ruthenium Collioids”, J. Colloid Interf. Sci., 208 (1998) 439.
    53. N. Toshima, and Y. Wang, “Preparation and Catalysis of Novel Colloidal Dispersions of Copper/Noble Metal Bimetallic Clusters”,Langmuir, 10 (1994).
    54. W. Yu, Y. Wang, and H. Liu. “Preparation and Characterization of Polymer-protected Pt/Co Bimetallic Colloids and Their Catalytic Properties in the Selective Hydrogenation of Cinnamaldehyde”, J. Mol. Catal. A, 112 (1996) 105
    55. X. Yang, H. Liu, and H. Zhong, “Hydrogenation of o-chloronitrobenzene over Polymer-Stabilized Palladium–Platinum Bimetallic Colloidal Clusters”, J. Mol. Catal. A, 147 (1999) 55.
    56. 陳碧真, “CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究”, 國立中央大學化學工程研究所碩士論文 (2002).
    57. C. L. Thomas, in “Catalytic Processes and Proven Catalysts”, Chap. 15, Academic Press, New York (1970).
    58. R. Rao, A. Dandekan, R. T. K. Baker, and M. A. Vannice, “Properties of Copper Chromite Catalysts in Hydrogenation Reactions”, J. Catal., 171 (1997) 406.
    59. J. McEvoy, and H. Shalit, “Copper Chromite –Alkali Metal Oxide High Surface Area Hydrogenation Catalyst”, U.S. Patent, 3,374,184, Mar. 19 (1968).
    60 H. Adkins, and R. Connor, “Hydrogenation over Copper Chromite”, J. Am. Chem. Soc., 53 (1931) 1090.
    61. M. S. Borts, N. D. Gil’chenok, V. M. Ignat’ev, and G. S. Gurevich, “Kinetics of Vapor-Phase Hydrogenation of Furfural on a Copper Chromite Catalyst”, J. Appl. Chem. USSR, 59 (1986) 114.
    62. G. Seo, and H. Chon, “Hydrogenation of Furfural over Copper-
    Containing Catalysts”, J. Catal., 67 (1981) 424.
    63. J. Kije´nski, P. Winiarek, T. Paryjczak, A. Lewicki, and A.Mikoajska, “Platinum Deposited on Monolayer Supports in Selective Hydrogenation of Furfural to Furfuryl Alcohol”, Appl. Catal.A, 233 (2002) 171
    64. H. Noller, and W. M. Lin, “Activity and Selectivity of Ni-Cu/Al2O3Catalysts for Hydrogenation of Crotonaldehyde and Mechamism of
    Hydrogenation”, J. Catal., 85 (1984) 25.
    65. D. V. Solkoskii, N. V. Anisimova, A. K. Zharmagambetova, S. G. Mukhaedzhanova, and L. N. Edygenova, “Pt-Fe2O3 Catalytic System for Hydrogenation Reaction”, React. Kinet. Catal. Lett., 33 (1987) 399.
    66. M. A. Vannice, and B. Sen, “Metal-Support Effect on the Intramolecular Selectivity of Crotonaldehyde Hydrogenation over Platinum”, J. Catal., 115 (1989) 65.
    67. P. Beccat, J. C. Bertolini, Y. Gauthier, J. Massardier, and P. Ruiz, “Crotonaldehyde and Methylcrotonaldehyde Hydrogenation over Pt(111) and Pt80Fe20(111) Single Crystals”, J. Catal., 126 (1990) 451.
    68. Y. Nitta, T. Imanaka, and S. Teranish, “Hydrogenation Activity and Selectivity of Cobolt Boride and Cobolt Nickel Binary Boride Catalyst”, Bull. Chem. Soc. Jap., 53 (1990) 3154.
    69. T. B. L. W. Marinelli, S. Nabuurs, and V. Ponec, “Activity and Selectivity in the Reactions of Substituted α,β-Unsaturated Aldehydes”, J. Catal., 151(1995) 431.
    70. 高慶富, “α,β-不飽和醛於Yttria-Stabilized Zirconia負載式金屬觸媒之選擇性氫化反應研究”, 國立中央大學化學工程研究所碩士論文 (1998).
    71. 廖炳傑, “CuB超細合金觸媒之製備與催化性質探討”, 國立中央大學化學工程研究所博士論文 (2000).
    72. 李明書, “負載式CuB合金觸媒製備與催化性質探討”, 國立中央大學化學工程研究所碩士論文 (2002).
    73. 楊朝興, “負載式NiB/SiO2非晶態奈米觸媒的製備與氫化反應研究”, 國立中央大學化學工程研究所碩士論文 (2002).
    74. S. Galvagno, C. Milone, A. Donato, G. Neri, and R. Pietropaolo,“Influence of Metal Particle Size in Hydrogenation of Citral over Ru/C”, Catal. Lett., 18 (1993) 349.
    75 G. Neri, L. Mercadante, A. Donato, A. M. Visco, and S. Galvagno, ”Influence of Ru Precursor, Support and Solvent in the Hydrogenation of Cirtal over Ruthenium Catalysts”, Catal. Lett., 29 (1994) 379.
    76. B. Didillon, J. P. Candy, A. El Mansour, C. Houtmann, and J. M. Basset, “The Impact of Surface Organometallic Chemistry in Heterogeneous Catalysis: A New Class of Highly Chemoselective Hydrogenation Catalysts, RhsSn(n-C4H9)2/SiO2”, J. Mol. Catal., 74 (1992) 43.
    77. L. Mercadante, G. Neri, C. Milone, A. Donato, and S. Galvagno, “Hydrogenation of α,β-Unsaturated Aldehydes over Ru/Al2O3Catalysts”, J. Mol. Catal. A , 105 (1996) 93.
    78. B. Bachiller-Baeza, I. Rodriguez-Ramos, and A. Guerrero-Ruiz, “Influence of Mg and Ce Addition to Ruthenium Based Catalysts Used in Selectivity Hydrogenation of α,β-Unsaturated Aldehydes”, Appl. Catal. A, 205 (2001) 227.
    79. U. K. Singh, and M. A. Vannice, “Liquid Phase Citral Hydrogenation over SiO2-Supported Group VIII Metals”, J. Catal., 199 (2001) 73.
    80. N. W. Hurst, S. J. Gentry, and A. Jones, “Temperature Programmed Reduction”, Catal. Rev.-Sci. Eng. 24 (1982) 233.
    81. R. A. Rajadhyasha, and S. L. Karwa, “Solvent Effects in Catalytic Hydrogenation”, Chem. Eng. Sci., 41(7) (1986) 1765.

    QR CODE
    :::