| 研究生: |
王倜乾 Ti -chien |
|---|---|
| 論文名稱: |
黏性土壤之夯擊振波與剪力強度特性 Impact response and shear strength characteristics of clay |
| 指導教授: |
張惠文
Huei-wen Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 相對夯實度 、乾單位重 、錐尖阻抗 、衝擊加速度 |
| 外文關鍵詞: | Impact acceleration, cone resistance, relative compaction |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
夯實的成效受到土壤種類、含水量及夯擊方式等因素影響。一般現地施工須檢驗土壤之乾單位重是否合乎施工規範要求,常以工地密度試驗作檢驗,此法雖已廣泛被接受,但在實際檢驗上仍有許多不便之處,檢驗過程繁雜且缺乏便利性。本研究主要目的為藉由夯擊試驗,希望能探討一新的檢測方法。夯擊試驗採用特製夯擊試驗儀,將加速度計裝置於夯錘上,再利用夯錘夯擊試體,即可測得加速度歷時曲線,此曲線之最大值即為衝擊加速度(impact acceleration, )。本研究以中大紅土為試驗土樣,利用夯擊試驗探討夯實曲線之乾側在相對夯實度為90-100%時,試體承受夯擊後所激發之衝擊加速度與含水量、乾單位重及夯擊落距之關係。試驗結果顯示,在各種夯實能量條件下,衝擊加速度與乾單位重間皆呈線性關係,以夯實能量對衝擊加速度加以正規化,二者間仍有良好的線性關係,由衝擊加速度配合此正規化後之回歸式可求得夯實土壤乾單位重。為了探討相關剪力強度特性,另行製作相同條件的試體進行圓錐貫入試驗,分析錐尖阻抗與衝擊加速度之關連性,所得之錐尖阻抗與乾單位重間之關係與前述之衝擊加速度與乾單位重之關係類似,且衝擊加速度與錐尖阻抗間存有良好的線性關係。
Soil type, moisture content, compaction methods and other factors will affect the effectiveness of compaction. In order to measure the dry unit weight of soil in field, the sand cone method or the rubber balloon method are used frequently, but those are still not convenient enough. The purpose of this study is to explore a new detection method by impact test. The impact test uses a special test apparatus, by setting an accelerometer on the hammer, the variation of acceleration during the impact of hammer can be measured. The peak value of acceleration in the acceleration time history is defined as Impact acceleration. In this study, the lateritic soil sampled from NCU campus was used in the tests. The engineering properties of soil in the dry side and within 90-100% of the relative compaction is examined to obtain the relationships among impact acceleration, moisture content, dry unit weight and impact height. These experimental results revealed that under various conditions of compaction energy, the impact acceleration and the dry unit weight has a linear relationship. If the impact accelerations is normalized by compaction energy, these two factors will still have a good linear relation. Therefore, by using the data of impact acceleration, the dry unit weight of compacted soil can be obtained. Furthermore, prepared some specimens with the same conditions to perform the cone penetration tests, and the relationships between cone resistance and impact acceleration were examined. The relationships between cone resistance and dry unit weight are similar to that of the acceleration and dry unit weight. Acceleration and cone resistance have a linear relationship also.
1. 土質工學會,土質試驗法,日本土質工學會,第172-188頁及第247-248頁(1979)。
2. 王志偉,「微音錐應用於土壤音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2002)。
3. 古秉弘,「砂土中音波傳遞與量測之研究」,碩士論文,國立中央大學土木工程學系,中壢(2005)。
4. 任新紅,「強夯法加固地基的機理探討」,全國中文核心期刊路基工程,第二期,第106-107頁(2007)。
5. 李建中,「打樁引致之地表振動」,土木水利,第十卷,第四期,第46-59頁(1984)。
6. 李劭瑋,「複合式隔振設施降低波傳能量之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2005)。
7. 佐藤厚子、西川純一、山澤文雄,「衝擊加速度による改良盛土の 品質管理事例」,土與基礎,第48期,第21-23頁(2000)。
8. 周 健、張思峰、賈敏才、王冠英,「強夯理論的研究現狀及最新技術進展」,地下空間與工程學報,第二卷,第三期,第510-516頁(2006)。
9. 周國鈞,地基處理技術第一冊,中國冶金工業出版社,北京,第1-38頁(1989)。
10. 沈茂松,實用土壤力學試驗,文笙書局,台北,第137-264頁(1998)。
11. 林則名,「衝擊加速度與砂土力學性質之研究」,碩士論文,國立中央大學土木工程學系,中壢(2009)。
12. 施國欽,大地工程學(二)基礎工程篇,文笙書局,台北,第7.1-7.24頁(2004)。
13. 黃安斌 譯,大地工程原理(Principles of Geotechnical engineering 5E,原著Braja M. Das),臺灣東華書局股份有限公司,台北,第97-158頁(2005)。
14. 曾慶軍、莫海鴻、李茂英,「強夯後地基承載力的估算」,岩石力學與工程學報,第二十五卷,增刊2,第3523-3528頁(2006)。
15. 楊朝平、鄭郁志,「路基土層性質之簡易調查法-動態圓錐貫入儀」,台灣公路工程,第三十一卷,第二期,第54-66頁(2004)。
16. 詹金林、水偉厚、何立軍「強夯法地基處理設計及夯後檢測」,施工技術,第三十七卷,增刊,第124-128頁(2008)。
17. 詹有智,「砂土承受夯擊時之動應力分布」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
18. 趙煉恒、李 亮、何長明、鄒金鋒、曾中林,「土石混填路堤強夯加固範圍研究」,中國公路學報,第二十一卷,第一期,第12-18頁(2008)。
19. 歐志忠,「黏性土壤中柱體側向抵抗與評估方法之研究」,碩士論文,國立中央大學土木工程學系,中壢(1991)。
20. 葛致中,「驗證動力夯實夯錘夯擊效益之研究」,碩士論文,私立中原大學土木工程研究所,中壢(2002)。
21. 葉逸彬,「圓錐貫入試驗中砂土音射特性之研究」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
22. ASTM D698-07, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” Annual Book of ASTM Standards, West Conshohocken, (2007).
23. ASTM D1556-07, “Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method,” Annual Book of ASTM Standards, West Conshohocken, (2007).
24. ASTM D1557-07, “Standard Test Method for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3(2,700 kN-m/m3)),” Annual Book of ASTM Standards, West Conshohocken, (2007).
25. ASTM D1883-07, “Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils,” Annual Book of ASTM Standards, West Conshohocken, (2007).
26. ASTM D2167-07, “Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method,” Annual Book of ASTM Standards, West Conshohocken, (2007).
27. ASTM D2487-06, “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System),” Annual Book of ASTM Standards, West Conshohocken, (2006).
28. ASTM D3441-05, “Standard Test Method for Mechanical Cone Penetration Tests of soil,” Annual Book of ASTM Standards, West Conshohocken, (2005).
29. ASTM D5778-07, “Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils,” Annual Book of ASTM Standards, West Conshohocken, (2007).
30. Borg, J.P., Cogar, J.R., Lloyd, A., Ward, A., Chapman, D., Tsembelis, K., and Proud, W.G., “Computational simulations of the dynamic compaction of porous media,” International Journal of Impact Engineering, Vol. 33, pp. 109-118 (2006).
31. Barkan, D. D., Dynamic of Bases and foundation, McGraw- Hill, New York, pp.25-56 (1962).
32. Das, B.M., Principles of Geotechnical Engineering 5E, Brooks/Cole, Singapore (2002).
33. Dowding, K.J., Beck, J.V., and Blackwell, B.F., “Estimating Temperature - Dependent Thermal Properties,” Journal of Thermo physics and Heat Transfer, Vol 13, No. 3, pp. 328-336(1999).
34. Davis, J.L., and Chudobiak, W.J., “In-site Meter for Measuring Relative Permittivity of Soils,” Geological Survey of Canada, Paper 75-1A, pp. 75-79(1975).
35. Ewing, W.M., Jardetzky, W.S., and Press, P., “Elastic Waves in Layered Media,” McGraw-Hill (1957).
36. Hansbo, S., “Dynamic Consolidation of Soil by a Falling Weight,” Ground Engineering, Vol.11, No.5, pp.27-36 (1978).
37. Head, K. H., “Effective Stress Tests,” Manual of Soil Laboratory Testing, Vol.3, ELE-International Limited, pp.184-196 (1986).
38. Ito, H., and Komine, H., “Dynamic compaction properties of bentonite-based materials,” Engineering Geology, Vol. 98, pp. 133-143 (2008).
39. Jessberger, H.L., and Beine, R. A., “Heavy Tamping : Theoretical and Practical Concepts,” Proceedings of the 10th ICSMFE, Stockholm, pp.695-699 (1981).
40. Lee, F.H., and Gu, Q., “Method for Estimating Dynamic Compaction Effect on Sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 103, No. 2, pp. 139-152 (2004).
41. Leonards, G. A., Gutler, W. A., and Holtz, R. D., “Dynamic Compaction of Granular Soils,” Journal of the Geotechnical Engineering Division, ASCE, Vol.106, No.GT1, pp.35-44 (1980).
42. Lukas, R. G., “Geotechnical Engineering Circular No.1-Dynamic Compaction,” U.S. Department of Transportation, Federal Highway Administration, pp.255-316 (1995).
43. Mayne, P. W., Jones, J. S., and Dumas, J. C., “Ground Response to Dynamic Compaction,” Journal of Geotechnical Engineering, ASCE, Vol.110, No.6, pp.757-774 (1984).
44. Menard, L., and Broise, Y., “Theoretical and Practical Aspects of Dynamic Consolidation,” Geotechnique, Vol.25, No.1, pp.3-18 (1975).
45. Noborio, K., “Measurement of Soil Water Content and Electric Conductivity by Time Domain Reflectometry: a Review,” Computational Electronic Agriculture, Vol.31, No.3, pp. 213-237(2001).
46. Proctor, R.R., “Design and Construction of Rolled Earth Dams,” Engineering News Record, Vol. 3, pp. 245-248, 286-289, 348-351, 372-376(1933).
47. Pan, J.L., and Selby, A.R., “Simulation of dynamic compaction of loose granular soils,” Advances in Engineering Software, Vol. 33, pp. 631-640 (2002).
48. Theissen, J. R., and Wood, W. C., “Vibration in Structures Adjacent to Pile Driving,” Dames and Moore Engineering Bulletin, No.60, pp.4-21 (1982).
49. Wiss, J.F., “Construction Vibrations: State-of-the-Art,” Journal of the Geotechnical Engineering Division, Proceedings of the ASCE, Vol. 107, GT2, pp. 167-182 (1981).
50. Zou, W.L., Wang, Z., and Yao, Z.F., “Effect of Dynamic Compaction on Placement of High-Road Embankment,” Advances in Engineering Software, Vol. 19, pp. 316-323 (2005).