| 研究生: |
蔡登洲 Deng-Jhou Cai |
|---|---|
| 論文名稱: |
鈷觸媒催化之芳香雜環溴化物還原性烷基化反應: 以一鍋化反應製備烷基噻吩、呋喃、硒吩與吡咯之有機光電材料重要前驅物 Cobalt-Catalyzed Reductive Alkylation of Heteroaryl Bromides: One-Pot New Access to Alkyl-Thiophenes, -Furans, -Selenophenes, and -Pyrroles |
| 指導教授: |
劉青原
Ching-Yuan Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 烷基化反應 、芳香雜環 、鈷催化 |
| 外文關鍵詞: | alkylation reaction, hetroarys, Co-catalyzed |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討一個實用且便利之一鍋化烷基化反應,利用廉價之鈷鹽進行具有步驟經濟效益之還原性耦合反應,首次將各類烷基成功引入於有機光電領域熱門之功能性芳香雜環小分子,例如噻吩、呋喃、硒吩及吡咯。而在我們所尋得最佳化條件下,可以有效率合成多樣的烷基芳香雜環化合物,可達中等至良好之分離產率。
本研究所製備之2號或3號位烷基噻吩在高分子化學及有機材料領域中扮演相當重要的角色,為合成許多重要小分子與高分子。最重要的是,本研究與傳統烷基化反應條件相比,最大優勢在於不需預先製備對於空氣與水氣敏感的有機金屬試劑(如有機鎂、有機鋅試劑),而且使用廉價鈷鹽代替以往昂貴或具毒性之催化劑(鈀或鎳)來進行烷基化反應,著實為節能且環保之高效率合成途徑。
A practical and convenient Co-catalyzed alkylation method targeting on the facile introduction of various alkyl chains into organic-electronically significant heteroaryls including thiophenes, furans, selenophenes, and pyrroles is reported. Under well-optimized reaction conditions, a wide range of alkylated heteroaryls are efficiently prepared in moderate to good isolated yields. Notably, 2- or 3-alkylthiophenes, as playing a decisive role in polymer chemistry and organic materials, are step-economically synthesized for the first time by present reductive-coupling methodology using inexpensive cobalt salts as catalyst. This straightforward synthetic method avoids the preparation of moisture-unstable organometallic reagents (RMgX or RZnX) and the use of precious catalysts ([Pd] or [Ni]) required in conventional alkylation protocols.
[1] Tsukamoto, J.; Kiichiro, M.; Akio, T. J. Appl. Phys. 1980, 20, 121-133.
[2] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791.
[3] Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. Appl. Phys. Lett. 2001, 78, 841-843.
[4] Padinger, F.; Rittberger, R. S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85-88.
[5] Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316-2320.
[6] Kochi, J. K.; Tamura, M. J. Am. Chem. Soc. 1971, 93, 1483-1485.
[7] Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374-4376.
[8] Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 144a.
[9] Baba, S.; Negishi, E. J. Am. Chem. Soc. 1976, 98, 6729-6731.
[10] Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437-3440.
[11] Stille, J. K. Angew. Chem. Int. Ed. Engl. 1986, 25, 508-524.
[12] Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821-1823.
[13] Campo, B. J.; Bevk, D.; Kesters, J.; Gilot, J.; Bolink, H. J.; Zhao, J.; Bolsée, J.-C.; Oosterbaan, W. D.; Bertho, S.; D’Haen, J.; Manca, J.; Lutsen, L.; Van Assche, G.; Maes, W.; Janssen, R. A. J.; Vanderzande, D. Org. Electron. 2013, 14, 523-534.
[14] Kudret, S.; Haen, J. D.; Lutsen, L.; Vanderzande, D.; Maes, W. Adv. Synth. Catal. 2013, 355, 569-575.
[15] Seo, J. H.; Nam, S. Y.; Lee, K.-S.; Kim, T.-D.; Cho, S. Org. Electron. 2012, 13, 570-578.
[16] Everson, D. A.; Shrestha, R.; Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920-921.
[17] Wang, S.; Qian, Q.; Gong, H. Org. Lett. 2012, 14, 3352-3355.
[18] Xu, S.; Chen, H.-H.; Dai, J.-J.; Xu, H.-J. Org. Lett. 2014, 16, 2306-2309.
[19] Liu, J.-H.; Yang, C.-T.; Lu, X.-Y.; Zhang, Z.-Q.; Xu, L.; Cui, M.; Lu, X.; Xiao, B.; Fu, Y.; Liu, L. Chem. Eur. J. 2014, 20, 15334-15338.
[20] Czaplik, W. M.; Mayer, M.; Jacobi von Wangelin, A. Angew. Chem. Int. Ed. 2009, 48, 607-610.
[21] Amatore, M.; Gosmini, C. Chem. Eur. J. 2010, 16, 5848-5852.
[22] Ackermann, L. J. Org. Chem. 2014, 79, 8948-8954.
[23] Still, W. C.; Kahn, M.;Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
[24] Cheng, X.; Dong, X.; Huang, R.; Zeng, X.; Ungar, G.; Prehm, M.; Tschierske, C. Chem. Mater. 2008, 20, 4729-4738.
[25] Hai, J.; Yu, W.; Zhao, B.; Li, Y.; Yin, L.; Zhu, E.; Bian, L.; Zhang, J.; Wu, H.; Tang, W. Polym. Chem. 2014, 5, 1163-1172.
[26] Efrem, A.; Lim, C.-J.; Lu, Y.; Ng, S.-C. Tetrahedron Lett. 2014, 55, 4849-4852.
[27] Labaudiniere, R.; Hilboll, G.; Leon-Lomeli, A.; Terlain, B.; Cavy, F.; Parnham, M.; Kuhl, P.; Dereu, N. J. Med. Chem. 1992, 35, 3170-3179.
[28] Kudret, S.; Van den Brande, N.; Defour, M.; Van Mele, B.; Lutsen, L.; Vanderzande, D.; Maes, W. Polym. Chem. 2014, 5, 1832-1837.
[29] Ushijima, S.; Moriyama, K.; Togo, H. Tetrahedron 2012, 68, 4588-4595.
[30] Zhang, S.; Ye, L.; Zhao, W.; Liu, D.; Yao, H.; Hou, J. Macromolecules 2014, 47, 4653-4659.
[31] Qin, T.; Zajaczkowski, W.; Pisula, W.; Baumgarten, M.; Chen, M.; Gao, M.; Wilson, G.; Easton, C. D.; Müllen, K.; Watkins, S. E. J. Am. Chem. Soc. 2014, 136, 6049-6055.
[32] Cho, H.; Lee, S.; Cho, N. S.; Jabbour, G. E.; Kwak, J.; Hwang, D.-H.; Lee, C. ACS App. Mate. Interfaces. 2013, 5, 3855-3860.
[33] Yoshinori, N.; Katsumi, Y. J. Appl. Phys. 1990, 29, 675-678.
[34] Al-Hashimi, M.; Baklar, M. A.; Colleaux, F.; Watkins, S. E.; Anthopoulos, T. D.; Stingelin, N.; Heeney, M. Macromolecules 2011, 44, 5194-5199.
[35] Mahrok, A. K.; Carrera, E. I.; Tilley, A. J.; Ye, S.; Seferos, D. S. Chem. Comm. 2015, 51, 5475-5478.