跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊承晞
Cheng-Xi Yang
論文名稱: 利用MATLAB建立自適應鬼影成像系統之研究
指導教授: 鍾德元
De-Yuan Zhong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 71
中文關鍵詞: 鬼影成像自適應系統
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鬼影成像(Ghost Imaging)是一種新穎的成像技術,在最近幾年中受到了廣泛的關注。動態鬼影成像(Ghost Imaging of dynamic scenes)由連續的鬼影成像所組成,重建對象為動態場景的重建影片。
    本文的目標為提升動態鬼影成像的影片重建效率。為此設計一套使用自適應演算法(Adaptive Algorithm)利用動態場景中影格間存在的時空冗餘,減少動態鬼影成像中影片重建所需要的採樣數與計算時間的自適應鬼影成像系統(Adaptive Ghost Imaging system)。
    經模擬測試自適應鬼影成像系統可適應絕大多數的動態場景類型,並根據不同的動態場景中時空冗餘的多寡與變化自動調整適合的採樣數以完成高品質的影片重建。


    Ghost imaging is a novel imaging technique that has received extensive attention in recent years. Dynamic ghost imaging consists of continuous ghost imaging, and the reconstruction video consists of reconstructed images of a dynamic scene.
    The goal of this article is to improve the video reconstruction efficiency of dynamic ghost imaging. For this purpose, a set of adaptive ghost imaging system is designed to use the adaptive algorithm to take advantage of the spatiotemporal redundancy between the frames in the dynamic scene to reduce sampling times and calculation time required for video reconstruction in dynamic ghost imaging.
    After simulation test, the adaptive ghost imaging system can adapt to most types of dynamic scenes, and automatically adjust the appropriate sampling times according to the amount and change of spatiotemporal redundancy in different dynamic scenes to complete high-quality video reconstruction.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 第二章 理論基礎 4 2-1 鬼影成像 4 2-1-1 鬼影成像發展 4 2-1-2 Fast Walsh-Hadamard Transform鬼影成像 8 2-2 進化壓縮感知 11 2-3 自適應演算法 12 2-4 訊號處理 14 SSIM index 14 第三章 自適應鬼影成像系統 16 3-1 光學系統 17 3-2 演算法 18 3-2-1 自適應鬼影成像演算法概論 18 3-2-2 圖組設定 20 3-2-3 進化壓縮感知圖組 21 3-2-4 背景計算 22 3-2-5 背景利用圖組 23 3-3流程圖 24 3-4 演算法參數 27 3-5 評價函數 29 3-5-1 影片重建品質評價 30 3-5-2 影片重建效率評價 31 3-5-3 重建影片對於演算法適合程度評價 32 第四章 模擬 33 4-1 模擬介紹 33 4-2 模擬參數設定 34 4-3 模擬項目 35 4-3-1 預設參數模擬 35 4-3-2 背景判斷閥值S與演算法成果之關係 40 4-3-3 部分採樣數M與演算法成果之關係 44 4-4 模擬總結 47 第五章 實驗與結果分析 49 5-1 實驗架構 50 5-2 實驗前測試:基底對應測試 52 5-3 實驗樣品 53 5-4 樣品切換實驗 54 5-5 實驗分析與總結 56 第六章 結論 57 6-1 論文總結 57 6-2 未來展望 58 第七章 附錄 59

    1. Duarte, M.F., et al., Single-pixel imaging via compressive sampling. IEEE signal processing magazine, 2008. 25(2): p. 83-91.
    2. Bromberg, Y., O. Katz, and Y. Silberberg, Ghost imaging with a single detector. Physical Review A, 2009. 79(5): p. 053840.
    3. Morris, P.A., et al., Imaging with a small number of photons. Nature communications, 2015. 6(1): p. 1-6.
    4. Radwell, N., et al., Single-pixel infrared and visible microscope. Optica, 2014. 1(5): p. 285-289.
    5. Janassek, P., S. Blumenstein, and W. Elsäßer, Ghost spectroscopy with classical thermal light emitted by a superluminescent diode. Physical Review Applied, 2018. 9(2): p. 021001.
    6. Sun, M.-J., et al., Single-pixel three-dimensional imaging with time-based depth resolution. Nature communications, 2016. 7(1): p. 1-6.
    7. Clemente, P., et al., Optical encryption based on computational ghost imaging. Optics letters, 2010. 35(14): p. 2391-2393.
    8. Zhang, X., et al., Adaptive ghost imaging. Optics Express, 2020. 28(12): p. 17232-17240.
    9. Pittman, T., et al., Optical imaging by means of two-photon quantum entanglement. Physical Review A, 1995. 52(5): p. R3429.
    10. Shapiro, J.H., Computational ghost imaging. Physical Review A, 2008. 78(6): p. 061802.
    11. Katz, O., Y. Bromberg, and Y. Silberberg, Compressive ghost imaging. Applied Physics Letters, 2009. 95(13): p. 131110.
    12. Yu, W.-K., et al., Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Optics express, 2014. 22(6): p. 7133-7144.
    13. Li, Z., et al., Content-adaptive ghost imaging of dynamic scenes. Optics express, 2016. 24(7): p. 7328-7336.
    14. Narendra, K.S. and A.M. Annaswamy, Stable adaptive systems. 2012: Courier Corporation.
    15. Bennink, R.S., S.J. Bentley, and R.W. Boyd, “Two-photon” coincidence imaging with a classical source. Physical review letters, 2002. 89(11): p. 113601.
    16. Valencia, A., et al., Two-photon imaging with thermal light. Physical review letters, 2005. 94(6): p. 063601.
    17. Wang, L. and S. Zhao, Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photonics Research, 2016. 4(6): p. 240-244.
    18. Zhang, Z., et al., Hadamard single-pixel imaging versus Fourier single-pixel imaging. Optics Express, 2017. 25(16): p. 19619-19639.
    19. Pratt, W.K., J. Kane, and H.C. Andrews, Hadamard transform image coding. Proceedings of the IEEE, 1969. 57(1): p. 58-68.
    20. Wikipedia, c. Least mean squares filter. 21 February 2020 09:45 UTC 17 July 2020 05:21 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Least_mean_squares_filter&oldid=941899198.
    21. Wikipedia, c. Structural similarity. 8 July 2020 13:48 UTC 19 July 2020 03:20 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Structural_similarity&oldid=966673856.
    22. Hore, A. and D. Ziou. Image quality metrics: PSNR vs. SSIM. in 2010 20th international conference on pattern recognition. 2010. IEEE.
    23. Wang, Z., L. Lu, and A.C. Bovik, Video quality assessment based on structural distortion measurement. Signal processing: Image communication, 2004. 19(2): p. 121-132.
    24. Xu, Z.-H., et al., 1000 fps computational ghost imaging using LED-based structured illumination. Optics express, 2018. 26(3): p. 2427-2434.

    QR CODE
    :::