| 研究生: |
管柏㨗 Bo-jie Guan |
|---|---|
| 論文名稱: |
利用高分子聚合物波導之軟性電路板 實現4通道 × 10-Gbps 光學連結收發模組 4-Channel × 10-Gbps Optical Transceiver Using Polymer Waveguide on Flexible Printed Circuit Board |
| 指導教授: |
伍茂仁
Mount-learn Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 高分子聚合物波導 |
| 外文關鍵詞: | polymer waveguide |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中提出以軟性電路板為核心之雙向4通道 × 10-Gbps 光學連結收發模組,模組整合高分子聚合物波導、接收端驅動IC、接收端TIA、面射型雷射、光檢測器於軟性電路板上。在高分子聚合物波導內製作45°微反射面用於光路的轉折以連接面射型雷射與多模光纖、多模光纖與光檢測器。
經由實驗的量測,在發射端中面射型雷射出光經高分子聚合物波導耦入多模光纖中,最大耦光效率為66%。在接收端中多模光纖出光經高分子聚合物波導耦入光檢測器,其最大耦光效率為62%。軟板光路經設計後,在雷射與光檢測器的對位封裝上光學效率降至1-dB時的位移容忍度可達 ±10 μm以上,是足夠用於封裝製程上。各通道間光學串音干擾在發射端與接收端均在-35dB以下。模組整體光學效率為-3.86 dB。
在10 Gbit/s的資料傳輸下,發射端4通道之高頻眼圖均可通過10GbE眼罩,且均具有15%以上之裕度;接收端誤碼率的量測上以發射端模組作為光源,誤碼率可達10-12等級,證實此光學收發模組是具有4通道× 10-Gbps 的資料傳輸能力。
In this thesis, we proposed a 4-channel × 10-Gbps optical transceiver using polymer waveguide on a flexible printed circuit board(FPC), where the VCSEL and photodiode(PD) as well as the transmitter driver IC and receiver amplifier IC are integrated on the flexible FPC to demonstrate the high-speed optical interconnects. The polymer waveguide combined with a polymer-base 45° mirror is used to connect the VCSEL and multi-mode fiber(MMF) and the MMF and PD.
The maximum optical coupling efficiency of around 66% from the VCSEL to 50-m-core MMF via a polymer waveguide is experimentally obtained. The maximum coupling efficiency between MMF and PD via a polymer waveguide is around 62%. The 1-dB alignment tolerances for both VCSEL/PD at the input/output port are larger than ± 10 m that will facilitate the assembly of the VCSEL/PD. The inter-channel optical crosstalk at both Tx and Rx can be less than -35dB. The total optical transmission from transmitter to receiver is -3.86 dB.
For the high-speed measurement under a 10 Gbit/s data transmission, the clear optical eye pattern passing the 10 Gbit/s Ethernet eye mask with at least 15% margin is demonstrated. The bit-error-rate(BER) of 10-12 under full optical links is also achieved. It means that the proposed polymer-based optical interconnect module is capable of 10-Gbit/s data transmission.
[1] Brian E. Lemoff et al.,“MAUI: Enabling Fiber-to-the-Processor With Parallel Multiwavelength Optical Interconnects,”IEEE J. Lightwave technology, 22(9), pp. 2043-2054(2004).
[2] L. Schares et al., “Terabus: Terabit/Second-Class Card-Level Optical Interconnect Technologies,”IEEE J. Sel. Top. Quantum electron., 12(5), 1032-1044(2006).
[3] Roger Dangel et al.,“Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,”IEEE Trans. on Advan. Packag., vol. 3, no. 4, pp. 759-767(2008)
[4] N. Savage, “Linking with light, ”IEEE Spectr. vol. 39, no.8, pp.32-36(2002).
[5] Jeffrey A. Kash et al.,“Optical Interconnects in Future Servers,”in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, Mar. 2011.pp.1-3, paper OWQ1
[6] JEFFREY A. DAVIS et al.,“Interconnect Limits on Gigascale Integration (GSI) in the 21st Century,”Proc. IEEE Micro, vol. 89, pp.305-324(2001)
[7] D. A. B. Miller et al., “Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture, ”J. Parallel Distrib. Comput., vol.41, pp. 4252(1997)
[8] Tomoyuki Hino et al.,“A 10 Gbps x 12 channel Pluggable Optical Transceiver for High-speed Interconnections,”IEEE Electronic components and technology conference, pp. 1838-1843(2008).
[9] Tetsuya Mori et al.“Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers”Proc. of SPIE, Vol. 7607(2010).
[10] Norio Chujo1 et al.“A 25-Gb/s × 4-Ch, 8 × 8 mm2, 2.8-mm Thick Compact Optical Transceiver Module for On-Board Optical Interconnect”OFC/NFOEC Technical Digest OSA, 2013.
[11] Naoki Matsushima et al.“High-stability 25 Gb/s optical transceiver module with flexible polymer wave guide for optical interconnection” IEEE, CPMT Symposium Japan , pp. 1-4, 2012.
[12] Yutaka Hatakeyama et al.“PMT connectors for multi-channel film waveguides”SPIE, 2009.