| 研究生: |
謝秀敏 Hsiou-Min Hsieh |
|---|---|
| 論文名稱: |
狀態方程式結合混合律關聯密度及過剩體積以應用於估算黏度之結果討論 |
| 指導教授: |
李亮三
Liang-Sun Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 過剩體積 、密度 、黏度 |
| 外文關鍵詞: | density, excess volume, viscosity |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究蒐集65個雙成分溶液系統,利用狀態方程式結合Eyring黏度模式的方法,探討Redlich - Kwong(RK)、Soave - Redlich - Kwong(SRK)和Peng - Robinson(PR)三個雙參數狀態方程式與Harmens - Knapp(HK)、Schmidt - Wenzel(SW)、Patel - Teja(PT)和Iwai - Margerm - Lu(IML)四個三參數狀態方程式,結合van der Waals(vdW)、van Laar(vL)和Redlich - Kister(RK)三種混合律,與分別以密度、過剩體積之實驗數據所決定的最適化交互作用參數值,搭配進行對Eyring黏度模式的關聯和估算。本文將針對關聯與預測計算流程—密度、過剩體積、黏度三項性質結果進行討論。
估算結果顯示一般雙成分混合溶液系統,則選用雙參數的狀態方程式,搭配交互作用參數κij= 0及單一參數 模式估算即可,其黏度的AARD值為1.41%;若系統分子極性較強,例如含水系統,則選用雙參數的狀態方程式,搭配交互作用參數κij= 0及LCD 模式,使得原本在單一參數 模式之AARD值高達12.60%,於LCD 模式之AARD值則減至2.78%,大大提升準確性。
In this study, the two - parameter van der Waals type cubic equations of state(EOS) of Redlich - Kwong(RK), Soave - Redlich-Kwong(SRK), Peng - Robison(PR), and the three - parameter EOS of Harmens - Knapp(HK), Schmidt -Wenzel(SW), Patel - Teja(PT) ,and Iwai - Margerm - Lu(IML) were used with the Erying kinematic viscosity model to estimate the visco- sities of 65 binary mixtures. The viscosity estimation with the molecular interaction parameter was correlated from the data of excess volumes or densities of mixtures. The effect of the molecular interaction parameter and the mixing rule, van der Waals (vdW), van Laar (vL), and Redlich - Kister (RK) on the viscosity estimations were also considered. More observations were discussed in this thesis.
1. L. S. Lee and Y. S. Lee, “The Application of the Equation of State Incorporated with Mixing Rule for Viscosity Estimation of Binary Mixtures,” Fluid Phase Equilibria, 181 (2001) 47-58.
2. J. S. Chang, “A Study on Thermodynamic Properties of Coal-Liquid Model Compounds and Polymers,” Ph. D. thesis, National Taiwan University of Science and Technology, Taipei, Taiwan, 1997.
3. T. K. Lin, ”A Study on the Density and Viscosity of Monoethanol- amine-containing Solutions,” M. S. thesis, National Taiwan University of Science and Technology., Taipei, Taiwan, 1994.
4. M. M. Abbott and K. N. Nass, “Equation of State and Classical Solution Thermodynamics,” In Equation of State Theories and Applications, Chao, K. C. and R. L. Robinson, Jr. , Eds., Chap.1, 1-40, ACS Symposium Series 300, American Chemical Society, Washington DC, 1986.
5. O. Redlich and J. N. S. Kwong, “On the Thermodynamics of Solutions,” Chem. Rev., 44 (1949) 233-244.
6. G. Soave, ”Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Sci., 27 (1972) 1197-1203.
7. D. Y. Peng and D. B. Robinson, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 15 (1976) 59-64.
8. A. Harments and H. Knapp, “Three-Parameter Cubic Equation of State for Normal Substances,” Ind. Eng. Chem. Fundam., 19 (1980) 291-294
9. G. Schemidt and H. Wenzel, “A Modified van der Waals Type Equation of State,” Chem. Eng. Sci., 35 (1980) 1503-1512.
10. N. C. Patel and A. S. Teja, “A New Cubic Equation of State for Fluids and Fluid Mixtures,” Chem. Eng. Sci., 37 (1982) 463-473.
11. Y. Iwai, M. R. Margerum and B. C. -Y. Lu, “A New Three-Parameter Cubic Equation of State for Polar Fluids and Fluid Mixtures,” Fluid Phase Equilibria, 42 (1988) 21-41.
12. G. K. Georgeton, R. L. Smith, Jr. and A. S. Teja, “Application of Cubic Equation of State to Polar Fluids and Fluid Mixtures,” In Equation of State Theories and Applications, Chao, K. C. and R. L. Robinson, Jr., Eds., Chap.21, 434-451, ACS Symposium Series 300, American Chemical Society, Washington DC, 1986.
13. R. Strjek and J. H. Vera, “PRSV : An Improved Peng-Robinson Equation of State with New Mixing Rules for Strongly Nonideal Mixtures,” Can. J. Chem. Eng., 64 (1986) 334-340.
14. Y. Adachi and H. Sugie, “A New Mixing Rule - Modified Conventional Mixing Rule,” Fluid Phase Equilibria, 28 (1986) 103-118.
15. S. Chang and B. C. -Y. Lu, “Prediction of Partial Molar Volumes of Normal Fluid Mixtures,” Can. J. Chem. Eng., 48 (1970) 261-266.
16. M. K. Kumaram, G. C. Benson, P. J. D’arcy and C. J. Halpin, “Speed of Sound, Molar Volume and Molar Isobaric Heat Capacity for Binary Liquid Mixtures : Analysis in Terms of van der Waal’s One-Fluid Theory,” J. Chem. Thermodynamics, 16 (1984) 1181-1189.
17. Y. Adachi and H. Sugie, “A New Method to Predict Thermodynamic Properties of Mixtures by Means of A Cubic Equation of State,” J. Chem. Eng. Japan, 21 (1988) 57-63.
18. S. P. Serbanovic, B. D. Dordevic and D. K. Grozdanic, “Excess Molar Volume Prediction for Some Hydrocarbons and Related Mixtures by Means of Simple Cubic Equation State,” Fluid Phase Equilibria, 57 (1990) 47-65.
19. H. Ogawa, A. Arimoto and S.Murakami, “An Interpretation of Molar Excess Volumes for Binary Liquid Mixtures of Cyclohexane with Some Hydrocarbons Using the van der Waals Three-Fluid Mixture Equation of State,” Thermochimica Acta, 183 (1991) 175-182.
20. B. D. Djordjevic and S. P. Serbanovic, “The Influence of Two and Three Binary Interaction Parameters on the Prediction of Excess Molar Volume by Cubic Equations of State,” J. Serb. Chem. Soc., 56 (1991) 95-102.
21. B. D. Djordjevic, S. P. Serbanovic and A. Ciric, “Procedure for Molar Volume Determination for Excess Molar Volume Prediction by Means of the PRSV Equation of State,” J. Serb. Chem. Soc., 56 (1991) 19-24.
22. B. D. Djordjevic, S. P. Serbanovic and D. K. Grozdanic, “Calculation of Excess Molar Volumes with Different Cubic Equation of State and Different Mixing Rule,” Can. J. Chem. Eng., 72 (1994) 171-176.
23. L. S.
Lee and M. L. Chuang, “Experiments and Correlations of Excess Volumes of Cyclohexane with Acetone, 2-Butanone, 3-Pentanone, Methyl Isobutyl Ketone, 1-Propanol, and 2-Propanol, and Acetic Acid + 1-Propanol System,” J. Chem. Eng. Data, 42 (1997) 850-853.
24. L. S. Lee and M. L. Chuang, “Calculations of Excess Molar Volume and Excess Molar Enthalpies with different Coupling of Cubic Equation of State and Mixing Rules,” J. of Chin. Int. Chem. Eng., 30(1999) 243-254.
25. J. P. O’connell, , J. M. Prausnitz and B. E. Poling, The Properties of Gases and Liquids, 4th ed., McGraw-Hill, New York, 2001
26. D. S. Visuanath and G. Natarajan, Data Book on the viscosity of Liquids, Hemisphere, 1989
27. J. Allen and A. S. Teja, “Correlation and Prediction of the Viscosity of Defined and Undefined Hydrocarbon Liquids,” Can. J. Chem. Eng., 69 (1991) 986-996.
28. H. Orbey and S. I. Sandler, “The Prediction of the Viscosity of Liquid Hydrocarbons and their Mixtures as a Function of Temperature and Pressure,” Can. J. Chem. Eng., 71 (1993) 437-446.
29. A. K. Mehrotra, W. D. Monnery, and Y. W. Y. Svrcek, “A Review of Practical Calculation Methods for the Viscosity of Liquid Hydrocarbons and their Mixtures,” Fluid Phase Equilibria, 117 (1996) 344-355.
30. J. B. Irving, “Viscosities of Binary Liquid Mixtures : A Survey of Mixture Equations,” Natl. Eng. Lab., Rept. 630, East Kilbride, Glasgow, Scotland, February 1977.
31. L. Pikkarainen, ”Densities and Viscosities of Binary Solvent Mixtures of n-Methylaecetamide with Aliphatic Alcohols,” J. Chem. Eng. Data, 28 (1983) 381-383.
32. J. D. Isdale, J. C. MacGillivray and G. Cartwright, “Prediction of Viscosity of Organic Liquid Mixtures by a Group Contribution Method,” Natl. Eng. Lab. Rept., East Kilbride, Glasgow, Scotland, 1985.
33. J. F. Ely and H. J. M. Hanley, “Prediction of transport properties. 1. Viscosity of fluids and mixtures,” Ind. Eng. Chem. Fundam., 20 (1981) 323-332.
34. A. S. Teja and P. Rice, “Generalized corresponding states method for the viscosities of liquid mixtures,” Ind. Eng. Chem. Fundam., 20 (1981) 77-81.
35. S. Diab and R. N. Maddox, “Calculating the Viscosity of Mistures by Group Contributions,” Chem. Eng. Commun., 38 (1985) 57-65.
36. K. A. Perersen, K. Kundsen and A. Fredenslund, “Prediction of Visco- sities of Hydrocarbon Mixtures,” Fluid Phase Equilibria, 70 (1991) 293-227.
37. K. J. Okeson and R. L. Rowley, “A 4-Parameter Corresponding-States Method for Prediction of Newtonian, Pure-Component Viscosity,” Int. J. Thermophys, 12 (1991) 119-136.
38. M. J. Lee and M. C. Wei, “Corresponding-States Model for Viscosity of Liquids and Liquid Mixtures,” J. Chem. Eng. Japan, 26 (1993) 159-165.
39. L. Y. Hua, M. P. Sheng and L. Ping “Estimation of Liquid Viscosity of Pure Compounds at Different Temperatures by a Corresponding-state Group-Contribution Method,” Fluid Phase Equilibria, 198 (2002) 123-130.
40. M. J. Assael, J. H. Dymond and P. M. Patterson “,” Int. J. Thermophys, 13 (1992) 895-
41. H. T. Davis, S. A. Rice and J. V. Sengers ” On the Kinetic Theory of Dense Fluids. IX. The Fluid of Rigid Spheres with a Square-Well Attraction,” J. Chem. Phys., 35 (1961) 2210-2233.
42. L. G. Du and T. M. Guo“A Semi-theoretical Viscosity Model for Non-polar liquids,” Chem. Eng. J., 47 (1991) 163-167.
43. W. D. Monnery, A. K. Mehrotra and W. Y. Svrcek, “Viscosity Prediction from a Modified Square Well Intermolecular Potential Model,” Fluid Phase Equilibria, 117 (1996) 378-385.
44. S. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Process, McGraw-Hill, New York, 1941.
45. P. B. Macedoand and T. A. Litovitz, “On the Relative Roles of Free Volume and Activation Energy in the Viscosity of Liquids,” J. Chem. Phy., 42 (1965) 245-256.
46. R. A. McAllister, “The Viscosity of Liquid Mixtures,” AIChE J., 6 (1960) 427-431.
47. M. J. Mussche and L. A. Verhoeye, “Viscosity of Ten Binary and One Ternary Mixtures,” J. Chem. Eng. Data, 20 (1975) 46-50.
48. A. -F. A. Asfour and F. A. L. Dullien, “Viscosities and Densities of Four Binary Liquid Systems at 25.00℃,” J. Chem. Eng. Data, 26 (1981) 312-316.
49. J. L. E. Chevalier, P. J. Petrino and Y. Gaston-Bonhomme, “Viscosity and Density of Some Aliphatic, Cyclic, and Aromatic Hydrocarbons Binary Liquid Mixtures,” J. Chem. Eng. Data, 35 (1990) 206-212.
50. M. Dizechi and E. Marschall, “Viscosity of Some Binary and Ternary Liquid Mixtures,” J. Chem. Eng. Data, 27 (1982) 358-363.
51. I. C. Wei and R. L. Rowley, “A Local Composition Model for Multicomponent Liquid Mixture Shear Viscosity,” Chem. Eng. Sci., 40 (1985) 401-408.
52. D. T. Wu, “Prediction of Viscosities of Liquid Mixtures by a Group Contribution Method,” Fluid Phase Equilibria, 30 (1986) 149-156.
53. J. L. Chevalier, P. Petrino and Y. Gaston-Bonhomme, “Estimation Method for the Kinematic Viscosity of a Liquid-Phase Mixture,” Chem. Eng. Sci., 43 (1988) 1303-1309.
54. 陳美如,”液體混合物黏度的計算,” 國立臺灣大學碩士論文,民國八十年。
55. W. Cao, K. Knudsen, A. Fredenslund and P. Rasmussen “Simultaneous Correlation of Viscosity and Vapor-Liquid Equilibrium Data,” Ind. Eng. Chem. Res., 32 (1993) 2077-2087.
56. Q. F. Lei and Y. C. Hou, ”Correlation of Viscosity of Binary Liquid Mixtures,” Fluid Phase Equilibria, 154 (1999) 153-163.
57. M. J. Lee, J. Y. Chiu, S. M. Hwang and H. M. Lin, “Viscosity Calculations with the Eyring-Patel-Teja Model for Liquid Mixtures,” Ind. Eng. Chem. Res., 38 (1999) 2867-2876.
58. R. J. Martins, M. J. E. de M. Cardoso and O. E. Barcia, “Calculation of Viscosity of Ternary and Quaternary Liquid Mixtures,” Ind. Eng. Chem. Res., 40 (2001) 1271-1275.
59. M. S. Ricardo, G. S. Fernando and E. J. Gaodencio, “An Equation-of State-Based Viscosity Model for Non-Ideal Liquid Mixtures,” Fluid Phase Equilibria, 210 (2003) 319-334.
60. W. L. Weng and J. T. Chen, “Density and Viscosity Measurement of N-Butylamine with Hexyl Alcohol Isomer Binary systems,” J. Chem. Eng. Data, 49 (2004) 1748-1751.
61. V. K. Rattan, S. Singh and B. P. S. Sethi, “Viscosities, Densities, and Ultrasonic Velocities of Binary Mixtures of Ethylbenzene with Ethanol, 1-Propanil, and 1-Butanol at (298.15 and 308.15)K,” J. Chem. Eng. Data, 49 (2004) 1074-1077.
62. R. C. Katyal, S. Singh, V. K. Rattan, P. Kanda, and S. Acharya, “Viscosities and Ultrasonic Velocities of 3-Pentanone + Ethylbenzene and 3-Pentanone + o-Xylene at (293.15, 303.15, and 313.15)K,” J. Chem. Eng. Data, 48 (2003) 1262-1265.
63. A. B. Pereiro, A. Rodriguez, J. Canosa, and J. Tojo, “Density, Viscosity, and Speed of Sound of Dialkyl Carbonates with Cyclopentane and Methyl Cyclohexane at Several Temperatures,” J. Chem. Eng. Data, 49 (2004) 1392-1399.
64. J. N. Nayak, M. I. Aralaguppi, and T. M. Aminabbavi, “Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of 1,4-Dioxane + Ethanediol, + Hexane, + Tributylamine, or + Triethylamine at (298.15, 303.15, and 308.15)K,” J. Chem. Eng. Data, 48 (2003) 1152-1156.
65. S. Singh, B. P. S. Sethi, R. C. Katyal, and V. K. Rattan, “Viscosities, Densities, and Speed of Sound of Binary Mixtures of o-Xylene, m-Xylene, p-Xylene, and Isopropylbenzene with 2-Butanone at 298.15 K,” J. Chem. Eng. Data, 50 (2005) 125-127.
66. H. L. Zhang, “Viscosity and Density for Binary Mixtures of Carbon Tetrachloride + Chloroform, Carbon Tetrachloride + Dichoromethane, and Chloroform + Dichloromethane and One Ternary Mixture of Chloroform + 1:1( Carbon Tetrachloride + Dichloromethane ) at 303.15K,” J. Chem. Eng. Data, 48 (2003) 52-55.
67. V. K. Rattan, S. Kapoor, and K. Tochigi, “Viscosities and Densities of Binary Mixtures of Toulene with Acetic Acid and Propionic Acid at (293.15, 303.15, 313.15, and 323.15)K,” J. Chem. Eng. Data, 47 (2002) 1182-1184.
68. R. da C. Cruz, R. J. Martins, M. J. E. M. Cardoso, and O. E. Barcia, “Measurement of the Viscosity of Binary and Ternary Systems Containing Benzaldehyde, Toluene, and Benzyl Alcohol at 293.15K and 0.1Mpa,” J. Chem. Eng. Data, 47 (2002) 927-931.
69. N. Indraswati, Mudjiati, F. Wicaksana, and H. Hindarso, “Density and Viscosity for a Binary Mixture of Ethyl Valerate and Hexyl Acetate with 1-Pentanol and 1-Hexanol at 293.15K and 313.15K,” J. Chem. Eng. Data, 46 (2001) 134-137.
70. C. H. Tu, S. L. Lee, and I. H. Peng, “Excess Volumes and Viscosities of Binary Mixtures of Aliphatic Alcohols (C1~C4) with Nitromethane,” J. Chem. Eng. Data, 46 (2001) 151-155.
71. N. G. Tsierkezos and I. E. Molinou, “Relative Permittivities, Speed of Sound, Viscosities, and Densities of Cyclohexanone + cis-Decalin and Cyclohexanone + trans-Decalin Mixtures at 283.15, 293.15, and 303.15K,” J. Chem. Eng. Data, 47 (2002) 1492-1495.
72. S. S. Raja and T .R. Kubendran, “Viscosities and Densities of Binary Mixtures of 1,4-Pioxane, Carbon Tetrachlorude, and Butanol at 303.15K, 308.15K, and 313.15K,” J. Chem. Eng. Data, 49 (2004) 421-425.
73. B. Giner, M. E. Aldea, S. Martin, I. Gascon, and C. Lafuente, “ Viscosities of Binary Mixtures of Isomeric Butanols or Isomeric Chlorobutanes with 2-Methyltetrahydrofuran,” J. Chem. Eng. Data, 48 (2003) 1296-1300.
74. J. N. Nayak, M. I. Aralaguppi, B. V. K. Naidu, and T. M. Aminabhavi, “Thermodynamic Properties of Water + Tetrahydrofuran and Water + 1,4-Dioxane Mixtures at (303.15, 313.15, and 323.15)K,” J. Chem. Eng. Data, 49 (2004) 468-474.
75. H. C. Ku and C. H. Tu, “Densities and Viscosities of Binary and Ternary Mixtures of Ethanol, 2-Butanone, and 2,2,4-Trimethylpentane at T= ( 298.15, 308.15, and 318.15)K,” J. Chem. Eng. Data, 50 (2005) 608-615.
76. C. S. Yang, W. Xu, and P. S. Ma, “Excess Molar Volumes and Viscosities of Binary Mixtures of Dimethyl Carbonate with Chlorobenzene, Hexane, and Heptane from (293.15 to 353.15)K and at Atmospheric Pressure,” J. Chem. Eng. Data, 49 (2004) 1802-1808.
77. S. Singh, B. P. S. Sethi, R. C. Katyal, and V. K. Rattan, “Viscosities Densities, and Speeds of Sound of Binary Mixtures of o-Xylene, m-Xylene, p-Xylene, and Isopropylbenzene with 4-Methylpentan-2-one at 298.15K,” J. Chem. Eng. Data, 49 (2004) 1373-1375.
78. J. L. Trenzado and J. S. Matos, “Densities, Viscosities, and Related Properties of Some (Methyl Ester + Alkane) Binary Mixtures in the Temperature Range from 283.15 to 313.15K,” J. Chem. Eng. Data, 46 (2001) 974-983.
79. B. Gonzalez, A. Dominguez, and J. Tojo, “Dynamic Viscosities, Densities, and Speed of Sound and Derived Properyies of the Binary System Acetic Acid with Water, Methanol, Ethanol, Ethyl Acetate and Methyl Acetate at T = (293.15, 298.15, and 303.15)K at Atmospheric Pressure,” J. Chem. Eng. Data, 49 (2004) 1590-1596.
80. M. V. Rathnam and S. Mohite, “Viscosity, and Density, and Refractive Index of Some (Ester + Hydrocarbon) Binary Mixtures at 303.15, and 313.15K,” J. Chem. Eng. Data, 50 (2005) 325-329.
81. P. S. Nikam and S. J. Kharat, “Densities, Viscosities, and Thermodynamic Properties of (N ,N-Dimethylformamide + Benzene + Chlorobenzene) Ternary Mixtures at (298.15, 303.15, 308.15, and 313.15)K,” J. Chem. Eng. Data, 48 (2003) 1202-1207.