| 研究生: |
林煒 Wei Lin |
|---|---|
| 論文名稱: |
鈣鈦礦結構觸媒載體LaTiO2N-C於燃料電池的應用 |
| 指導教授: |
諸柏仁
Po-jen Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 甲醇氧化反應 、陽極觸媒 、鈣鈦礦結構 |
| 外文關鍵詞: | Methanol Oxidation Reaction, Anode catalysts, Perovskite Structure |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
直接甲醇燃料電池具有高能量密度、進料容易、工作溫度低且是乾淨的能源,目前常應用於燃料電池觸媒,不論陽極的甲醇氧化或是陰極的氧還原,還是以白金及其合金觸媒催化效果較好,不過白金是價格昂貴的貴金屬,使得燃料電池成本居高不下,難以商業化,因此目前以減低白金用量(提升單位白金催化活性)的研究方向為主。所以有將白金奈米化的趨勢,而結合能固定奈米粒子的載體材料以利穩定奈米化的催化金屬是常見的策略。
目前常應用於觸媒載體的碳材雖然有高導電度和高表面積的優勢,然而在正電位下,碳容易氧化成二氧化碳使耐久度受到了限制,因此選用具有電化學、熱穩定性和抗腐蝕性的金屬陶瓷材料為一趨勢。根據文獻記載,鈣鈦礦結構LaTiO2N(LTON)的能隙是2.1eV比常應用於燃料電池觸媒載體的TiO2 3.2eV還要低而預測可得到更好的導電性,且此材料有鑭系金屬的參與,這種二元金屬陶瓷材料常有特殊的性質,因此本研究我們選用了鈣鈦礦結構LTON當作載體於應用在燃料電池觸媒的可能性。
實驗結果指出,Ce0.1La0.9TiO2N(Ce0.1-LTON)相較於其它微量Ce摻雜所承載白金具有較好催化甲醇氧化的活性,並由HR-TEM影像中得知Ce0.1-LTON可合成出較小的白金奈米粒徑(約3.7nm),並比其它的Ce莫耳比,發現Ce含量不同可以有效控制合成時白金奈米金屬的粒徑大小。由於Ce-O-Pt鍵結產生改變還原奈米金屬時的成核環境,然而單純白金金屬易受甲醇氧化時產生的中間產物一氧化碳佔住活性位置降低催化效率,稱為CO毒化(CO-poisoning),因此通常會添加第二金屬釕形成鉑釕合金當觸媒催化中心降低此效應。承載PtRu後發現需在Ce0.5-LTON才有較佳的催化活性(187A/g per Pt),並於HR-TEM影像得到較小奈米粒徑(3.5nm)。Ru的加入使系統較複雜,因為還要考慮在還原的環境下,Ru和Ce會形成Ru-Ce complex,因此推測當Ce0.5-LTON承載PtRu時,Ce-O-Pt鍵結和Ru-Ce complex的競爭反應而得到最佳化結果。
不過導電度並沒有我們預期的要好,仍需要添加XC-72碳材或導電高分子PEDOT的修飾彌補這個缺陷,期待有更好非使用碳的改質方法。
Direct methanol fuel cells (DMFCs) have high energy conversion efficiency, low operating temperature, easy fuel-feeding and it is environmentally friendly. Platinum-based catalyst has been commonly used in DMFCs, but it suffered from high cost. Thus, development of effective catalyst support which argues the catalyst activity and reduces amounts of Pt loading becomes the primary goal.
According to previous literature, traditional supports which composed of carbon material, such as XC-72, were oxidized easily to CO2 in positive potential and limited catalysts life time. In view of this, a recent research trend is to substituted carbon by ceramic materials which possess several advantages on electrochemical, thermal stability and corrosion-resistance. We examined perovskite structure, LaTiO2N(LTON), as the support. Earlier study shows the band gap of LTON is about 2.1 eV, lower than 3.2eV of TiO2 which usually applies in fuel cell catalyst support and promises better electron conductivity. In addition, utilization of lanthanum element is synthesized in LTON to make perovskite structure. The kind of binary metal ceramics has particular properties so we expect to know whether LTON applies in fuel cell catalyst support
In our experiment, we have discovered Ce doped LTON can reduce Pt particle size. HR-TEM shows that the size of Pt NPs prepared with the composition of Ce0.1La0.9TiO2N(Ce0.1-LTON) exhibited smaller particles
(3.7 nm) than other molar ratio of Ce, and exhibited more efficient methanol oxidation reaction (MOR) because production of Ce-O-Pt bond affects nucleation in reducing metal step. However, platinum NPs in MOR suffers from CO poisoning. To solve the problem, we have introduced PtRu alloy NPs to support on Cex-LTON and discovered changing composition of Ce0.5-LTON exhibited more efficient MOR with higher mass current (184A/g per Pt).
HR-TEM also shows that the size of PtRu NPs was smaller particles(3.4nm) than other ratio of Ce. In the situation, it is complicated to get explanation when Ru is mixed in the system due to considering production of Ru-Ce complex in reduction environment. We just guess optimization of two competitive factor which are production of Ce-O-Pt and Ce-Ru complex is at the ratio amount.
The electron conductivity issue is not entirely resolved from the lower band gap, and other carbon materials such as XC-72 and electron conductive polymer PEDOT are still required to amend the conductivity deficiency. Better improvement are being explored to amend this situation.
1. Grove, W. R., Philosophical Magazine Series 1893, (14), 127-130.
2. Langer, M. L. M. a. C., Fuel Cell History article. Proccedings of the Royal Society London 1989, (46), 296-304.
3. EG&G Technical Services, I., Fuel Cell Handbook (7th Edition). 2004.
4. Tabet-Aoul, A.; Mohamedi, M., Interrelated functionalities of hierarchically CNT/CeO2/Pt nanostructured layers: synthesis, characterization, and electroactivity. Physical chemistry chemical physics : PCCP 2012, 14 (13), 4463-4474.
5. Claude Lamy.; Alexandre Lima; Véronique LeRhun; Fabien Delime; Christophe Coutanceau; Léger, J.-M., Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources 2002, 105 (2), 283–296.
6. Felix N. Büchi; Inaba, M.; Schmidt, T. J., Polymer Electrolyte Fuel Cell Durability. 2009.
7. Pil Hyong Lee; Sang Seok Han; *, S. S. H., Three-Dimensional Transport Modeling for Proton Exchange Membrane(PEM) Fuel Cell with Micro Parallel Flow Field. Sensors 2008, 8 (3), 1475-1487.
8. Abida, B.; Chirchi, L.; Baranton, S.; Napporn, T. W.; Kochkar, H.; Léger, J.-M.; Ghorbel, A., Preparation and characterization of Pt/TiO2 nanotubes catalyst for methanol electro-oxidation. Applied Catalysis B: Environmental 2011, 106 (3-4), 609-615.
9. 林妍妤; 諸柏仁, 含鈦半導體陶瓷材料作為載體的燃料電池觸媒研究. 國立中央大學,化學系碩士研究論文 2014. p51、57
10. Hamnett, A., Mechanism and electrocatalysis in the direct methanol fuel cell. Catalysis Today 1997, 38 (4), 445–457.
11. Iwasita, T., Electrocatalysis of methanol oxidation. Electrochimica Acta 2002, 47 (22-23), 3663–3674.
12. Kyung-Won Park; Jong-Ho Choi; Boo-Kil Kwon; Seol-Ah Lee; *, Y.-E. S., Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation. J. Phys. Chem. B 2002, 106 (8), 1869–1877.
13. N. M. Marković; T. J. Schmidt; Stamenković, V.; Ross, P. N., Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells 2001, 1 (2), 105-116.
14. Katsounaros, I.; Schneider, W. B.; Meier, J. C.; Benedikt, U.; Biedermann, P. U.; Cuesta, A.; Auer, A. A.; Mayrhofer, K. J., The impact of spectator species on the interaction of H2O2 with platinum--implications for the oxygen reduction reaction pathways. Physical chemistry chemical physics : PCCP 2013, 15 (21), 8058-8068.
15. Adžić, R. R.; Wang, J. X., Configuration and Site of O2 Adsorption on the Pt(111) Electrode Surface. J. Phys. Chem. B 1998, 102 (45), 8988–8993.
16. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis 1986, 38, 5 - 25
17. (a) Hubert A. Gasteiger; Nenad Markovic; Philip N. Ross Jr.; Cairns, E. J., Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys. J. Phys. Chem. 1994, 98 (2), 617–625; (b) C. Lu; C. Rice; *, R. I. M., UHV, Electrochemical NMR, and Electrochemical Studies of Platinum/Ruthenium Fuel Cell Catalysts. J. Phys. Chem. B 2002, 106 (37), 9581–9589.
18. Bruce R. Rauhe Jr.; Frank R. McLarnon; Cairns, E. J., Direct Anodic Oxidation of Methanol on Supported Platinum/Ruthenium Catalyst in Aqueous Cesium Carbonate. J. Electrochem. Soc. 1995, 142 (5), 1073-1084.
19. G.J.K. Acresa; J.C. Frosta; G.A. Hardsa; R.J. Pottera; T.R. Ralpha; D. Thompsetta; G.T. Bursteinb; Hutchingsc, G. J., Electrocatalysts for fuel cells. Catalysis Today 1997, 38 (4), 393–400.
20. 肖剛, 燃料電池技術. 電子工業出版社 2010. p162
21. CRABTREE, R. H., THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS, fourth edition. A JOHN WILEY & SONS, INC. 2005.
22. J.O'm. Bockris, H. W., Electrocatalysis. Journal of Electroanalytical Chemistry 1959, 7 (6), 428–451.
23. Masahiro Watanabe; Makoto Uchida; Motoo, S., Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1987, 229 ( 1–2), 395–406.
24. Chu, D.; Gilman, S., Methanol Electro‐oxidation on Unsupported Pt‐Ru Alloys at Different Temperatures. J. Electrochem. Soc. 1996 143 (5), 1685-1690.
25. He, Z.; Chen, J.; Liu, D.; Zhou, H.; Kuang, Y., Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond and Related Materials 2004, 13 (10), 1764-1770.
26. YuYe; Hee Soo Kim; Panakkattu K. Babu; Piotr Waszczuk; Andrzej Wieckowski; *, E. O., An NMR Investigation of CO Tolerance in a Pt/Ru Fuel Cell Catalyst. J. Am. Chem. Soc. 2002, 124 (3), 468–473.
27. Yoshio Takasu; Wataru Sugimoto; Murakami, Y., Electrocatalytic Oxidation of Methanol and Related Chemical Species on Ultrafine Pt and PtRu Particles Supported on Carbon. Catalysis Surveys from Asia 2003, 7 (1), 21-29.
28. F. Maillard; M. Martin; F. Gloaguen; Léger, J.-M., Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition. Electrochimica Acta 2002, 47 (21), 3431–3440.
29. Hubert A. Gasteige; Nenad Marković; Jr., P. N. R.; Cairns, E. J., Temperature‐Dependent Methanol Electro‐Oxidation on Well‐Characterized Pt‐Ru Alloys. J. Electrochem. Soc. 1994, 141 (7), 1795-1803.
30. Rabis, A.; Rodriguez, P.; Schmidt, T. J., Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis 2012, 2 (5), 864-890.
31. S. Q. Song; W. J. Zhou; W. Z. Li; G. Sun; Q. Xin; S. Kontou; Tsiakaras, P., Direct methanol fuel cells : Methanol crossover and its influence on single DMFC performance. Ionics 2004, 10 (5-6), 458-462.
32. Hui Yang; Nicolás Alonso-Vante; Jean-Michel Léger, C. L., Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt−Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes. J. Phys. Chem. B 2004, 108 (6), 1938–1947.
33. Jalan, V.; Taylor, E. J., Importance of Interatomic Spacing in Catalytic Reduction of Oxygen in Phosphoric Acid. J. Electrochem. Soc. 1983, 130 (11), 2299-2302.
34. Sanjeev Mukerjee; Supramaniam Srinivasan; Soriaga, M. P.; McBreen, J., Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction An In Situ XANES and EXAFS Investigation. J. Electrochem. Soc. 1995, 142 (5), 1409-1422.
35. Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K., Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angewandte Chemie 2006, 45 (18), 2897-901.
36. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P. N.; Lucas, C. A.; Markovic, N. M., Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315 (5811), 493-7.
37. Shao, Y.; Liu, J.; Wang, Y.; Lin, Y., Novel catalyst support materials for PEMfuelcells: current status and future prospects. J. Mater. Chem. 2009, 19 (1), 46-59.
38. Liu, H.; Song, C.; Zhang, L.; Zhang, J.; Wang, H.; Wilkinson, D. P., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources 2006, 155 (2), 95-110.
39. Lewera, A.; Timperman, L.; Roguska, A.; Alonso-Vante, N., Metal–Support Interactions between Nanosized Pt and Metal Oxides (WO3and TiO2) Studied Using X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2011, 115 (41), 20153-20159.
40. A. S. Aricò; Srinivasan, S.; Antonucci, V., DMFCs: From Fundamental Aspects to Technology Development. Fuel Cells 2001, 1 (2), 133–161.
41. Carmo, M.; Paganin, V. A.; Rosolen, J. M.; Gonzalez, E. R., Alternative supports for the preparation of catalysts for low-temperature fuel cells: the use of carbon nanotubes. Journal of Power Sources 2005, 142 (1-2), 169-176.
42. Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yan, Y., Pt−Ru Supported on Double-Walled Carbon Nanotubes as High-Performance Anode Catalysts for Direct Methanol Fuel Cells. J. Phys. Chem. B 2006, 110 (31), 15353–15358.
43. Han, K. I.; Lee, J. S.; Park, S. O.; Lee, S. W.; Park, Y. W.; Kim, H., Studies on the anode catalysts of carbon nanotube for DMFC. Electrochimica Acta 2004, 50 (2-3), 791-794.
44. Carol A. Bessel; Kate Laubernds; Nelly M. Rodriguez; Baker, R. T. K., Graphite Nanofibers as an Electrode for Fuel Cell Applications. J. Phys. Chem. B 2001, 105 (6), 1115–1118.
45. Chan, K.-Y.; Ding, J.; Ren, J.; Cheng, S.; Tsang, K. Y., Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. Journal of Materials Chemistry 2004, 14 (4), 505.
46. (a) Jong-Sung Yu; Soonki Kang; Suk Bon Yoon; Chai, G., Fabrication of Ordered Uniform Porous Carbon Networks and Their Application to a Catalyst Supporter. J. Am. Chem. Soc. 2002, 124 (32), 9382–9383; (b) Geun Seok Chai; Suk Bon Yoon; Jong-Sung Yu; Jong-Ho Choi; Sung, Y.-E., Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell. J. Phys. Chem. B 2004, 108 (22), 7074–7079.
47. Tonomura, O.; Sekiguchi, T.; Inada, N.; Hamada, T.; Miki, H.; Torii, K., Band Engineering of Ru∕Rutile-TiO2∕Ru Capacitors by Doping Cobalt to Suppress Leakage Current. Journal of The Electrochemical Society 2012, 159 (1), G1.
48. Kolla, P.; Smirnova, A., Methanol oxidation on hybrid catalysts: PtRu/C nanostructures promoted with cerium and titanium oxides. International Journal of Hydrogen Energy 2013, 38 (35), 15152-15159.
49. Park, I.-S.; Lee, E.; Manthiram, A., Electrocatalytic Properties of Indium Tin Oxide-Supported Pt Nanoparticles for Methanol Electro-oxidation. Journal of The Electrochemical Society 2010, 157 (2), B251.
50. Wu, Z.; Dong, F.; Zhao, W.; Guo, S., Visible light induced electron transfer process over nitrogen doped TiO(2) nanocrystals prepared by oxidation of titanium nitride. Journal of hazardous materials 2008, 157 (1), 57-63.
51. Xiao, Y.; Zhan, G.; Fu, Z.; Pan, Z.; Xiao, C.; Wu, S.; Chen, C.; Hu, G.; Wei, Z., Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction. Electrochimica Acta 2014, 141, 279-285.
52. Qi, L.; Yin, Y.; Shi, W.; Liu, J.; Xing, D.; Liu, F.; Hou, Z.; Gu, J.; Ming, P.; Zou, Z., Intermittent microwave synthesis of nanostructured Pt/TiN–graphene with high catalytic activity for methanol oxidation. International Journal of Hydrogen Energy 2014, 39 (28), 16036-16042.
53. R. Asahi*; T. Morikawa; T. Ohwaki; K. Aoki; Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293 (5528), 269-271
54. Jiang, Z.-Z.; Wang, Z.-B.; Qu, W.-L.; Gu, D.-M.; Yin, G.-P., Synthesis and characterization of carbon riveted Pt/MWCNTs@TiO2–TiC catalyst with high durability for PEMFCs application. Applied Catalysis B: Environmental 2012, 123-124, 214-220.
55. R. B. Levy; Boudart, M., Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis. 181 1973, 4099 (547-549 ).
56. Fu, D.; Itoh, M., Ferroelectricity in Silver Perovskite Oxides. Condensed Matter 2011, 413-442.
57. Ferroelectric Properties of BaTiO3. Materials Design 2009.
58. Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L., An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy & Environmental Science 2014, 7 (8), 2535.
59. Luo, W.; Li, Z.; Jiang, X.; Yu, T.; Liu, L.; Chen, X.; Ye, J.; Zou, Z., Correlation between the band positions of (SrTiO3)1-x.(LaTiO2N)x solid solutions and photocatalytic properties under visible light irradiation. Physical chemistry chemical physics : PCCP 2008, 10 (44), 6717-23.
60. Shuiping, L.; Lianjiang, T.; Yu, Z.; Yanmo, C., Preparation of LaTiO2N photocatalyst with a large surface area. Journal of Physics: Conference Series 2009, 188, 012005.
61. Akihiko Kudo; Kato, H., Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chemical Physics Letters 2000, 331 (5–6), 373–377.
62. Yashima, M.; Saito, M.; Nakano, H.; Takata, T.; Ogisu, K.; Domen, K., Imma perovskite-type oxynitride LaTiO2N: structure and electron density. Chemical communications 2010, 46 (26), 4704-6.
63. Sulaeman, U.; Yin, S.; Sato, T., Synthesis of La/N Co-Doped SrTiO3 Using Polymerized Complex Method for Visible Light Photocatalysis. Advances in Nanoparticles 2013, 02 (01), 6-10.
64. Zhang, F.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; Oishi, S.; Domen, K., Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light. Journal of the American Chemical Society 2012, 134 (20), 8348-51.
65. Zhou, Y.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z.; O'Hayre, R., Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy & Environmental Science 2010, 3 (10), 1437.
66. Simon J. Clarke ; Benjamin P. Guinot ; Charles W. Michie ; Mathieu J. C. Calmont ; Rosseinsky, M. J., Oxynitride Perovskites: Synthesis and Structures of LaZrO2N, NdTiO2N, and LaTiO2N and Comparison with Oxide Perovskites. Chem. Mater 2001, 14 (1), 288–294.
67. Liu, X.; Wu, X.; Scott, K., Study of niobium and tantalum doped titania-supported Pt electrocatalysts for methanol oxidation and oxygen reduction reactions. Catal. Sci. Technol. 2014, 4 (11), 3891-3898.
68. Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S., Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction. Journal of Catalysis 2006, 242 (1), 103-109.
69. (a) Scibioh, M. A.; Kim, S.-K.; Cho, E. A.; Lim, T.-H.; Hong, S.-A.; Ha, H. Y., Pt-CeO2/C anode catalyst for direct methanol fuel cells. Applied Catalysis B: Environmental 2008, 84 (3-4), 773-782; (b) Gu, Y.; Liu, C.; Li, Y.; Sui, X.; Wang, K.; Wang, Z., Ce0.8Sn0.2O2−δ–C composite as a co-catalytic support for Pt catalysts toward methanol electrooxidation. Journal of Power Sources 2014, 265, 335-344.
70. Drillet, J. F.; Dittmeyer, R.; Jüttner, K., Activity and long-term stability of PEDOT as Pt catalyst support for the DMFC anode. Journal of Applied Electrochemistry 2007, 37 (11), 1219-1226.
71. 李皇諭; 諸柏仁, 高效能直接甲醇燃料電池觸媒之研究. 國立中央大學,化學系博士研究論文 2011. p56
72. Segal, D., Chemical synthesis of ceramic materials. Journal of Materials Chemistry 1997, (7), 1297-1305.
73. Li, Y.; Liu, C.; Liu, Y.; Feng, B.; Li, L.; Pan, H.; Kellogg, W.; Higgins, D.; Wu, G., Sn-doped TiO2 modified carbon to support Pt anode catalysts for direct methanol fuel cells. Journal of Power Sources 2015, 286, 354-361.