跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李俊鵬
Chung Peng
論文名稱: 微電滲泵之暫態熱流研究
Transient Thermal and Flow Study for the Micro Electroosmotic Pump
指導教授: 吳俊諆
Jiunn-Chi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 146
中文關鍵詞: 焦耳熱效應電滲泵電滲流
外文關鍵詞: Joule heating effect, Porous media, Electroosmotic pump, Electroosmotic flow
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電滲泵目前在生醫檢測晶片及微電子冷卻方面都有廣泛的應用,因此其流體輸送性能及溫度變化特性都相當重要。本文利用暫態模擬分析在微中空毛細管及多孔介質內電滲流之特性,搭配解析解及實驗數據的比對,探討包括速度、壓力及溫度等電滲泵重要參數。所使用的數學模型包含描述管內電位勢之Poisson-Boltzmann方程式、描述外加電場強度變化之Laplace方程式、描述速度場之修正型Navier-Stokes方程式及描述溫度場之能量方程式。
    模擬結果發現,包括電滲泵尺寸、流體種類、流體濃度、外加電場強度及外在冷卻條件等參數對溫度變化均有明顯影響。當焦耳熱效應不可忽略時,連帶所產生的焦耳自熱(auto-thermal)效應會使溫度大幅上升,由於流體黏滯係數及介電常數等參數對溫度變化敏感,進而影響電滲泵產生流率及壓力的能力。雖然溫度上升對有助於提升整體電滲泵性能,但是在電滲泵的應用中,對於操作溫度有上限,因此在設計電滲泵時,參數的選擇均須謹慎且適當。另外在微多孔電滲泵的數值模擬中,幾何管壁效應及電動管壁效應必須要列入考慮,否則模擬結果並不精確。


    The electroosmotic pump (EOP) has been widely used in driving and controlling microfluidics in the biochemical applications, and it is being used for liquid transportation in the electronics cooling solution recently. Thus, the temperature variation and the performance of the EOP for fluid transporting are very important. This study presents a transient numerical analysis of the electroosmotic flow in micro tubes and in porous media, combining analytical solutions and the validation of experimental data, to investigate velocity, pressure and the temperature characteristics of EOP. The mathematical model include the Poisson-Boltzmann equations for electric potential, the Laplace equation for external applied electric field, the modified Navier-Stokes equations for velocity field, and the energy equations for temperature field.
    Numerical results reveal that several factors affect the temperature characteristics of the EOP including: the size of EOP, the strength of applied electric field, the concentration of fluid and the cooling condition surrounding the tube. When the Joule heating effect is severe, the auto-thermal phenomenon causes large temperature rise and variation of the fluid viscosity and the dielectric constant, results in modifying the performance of EOP. Although the temperature increases help to enhance the operation of EOP; however, there is an upper limit of operating temperature for most applications of EOP. Therefore, selecting proper conditions in designing EOP is very important. Besides, it is also found that the wall effect from both the geometry and the electrokinetic need to be considered in the simulation of electroosmotic porous flow, otherwise, calculation results will not accurate.

    中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 符號說明 XIII 第一章 電滲泵 1 1.1 微泵簡介 1 1.1.1 微泵的分類 1 1.1.2 電滲泵與其他微泵的比較 2 1.2 電滲流機制 2 1.2.1 電雙層 2 1.2.2 電滲流 3 1.3 文獻回顧 4 1.3.1 中空毛細管內電滲流及電滲泵 4 1.3.2 多孔介質內電滲流及電滲泵 5 1.4 研究動機與方向 8 第二章 數值分析理論 10 2.1 幾何外形及基本假設 10 2.1.1 微流道幾何外型 10 2.1.2 基本假設 11 2.2 統御方程式 12 2.2.1 微中空毛細管內的電滲流 12 2.2.2 多孔介質內的電滲流 16 2.3 無因次統御方程式 23 2.3.1 微中空毛細管的電滲流 23 2.3.2 多孔介質的電滲流 26 2.4 變量孔隙率 29 2.5幾何外型、初始條件及邊界條件 29 2.5.1幾何外型及初始條件 29 2.5.2 邊界條件 30 2.5.3 無因次邊界條件 32 2.6 計算方法 34 第三章 結果與討論 36 3.1數值模擬之格點設置 36 3.2空心毛細管內電滲流 37 3.2.1 與實驗數據比較 37 3.2.2 流道尺寸對溫度的影響 41 3.2.3 流體濃度對溫度的影響 42 3.2.4 管外熱對流係數對溫度的影響 43 3.2.5 速度剖面 44 3.2.6 溫度之解析解 45 3.3 多孔介質內電滲流 50 3.3.1 管壁效應、孔隙率及塞入球形粒子對速度之影響 50 3.3.2 與實驗數據比較 53 3.3.3 微多孔電滲泵特性討論 55 第四章 結論與建議 61 4.1結論 61 4.2建議 62 參考文獻 64

    B. Alazmi and K. Vafai “Analysis of Variants within the porous media transport models,” J. Heat Transfer, 2000, 122, 303-326.
    R. Aris, Proceedings of Royal Society London A, 1959, 252, 538-550.
    D. E. Beasley and J. A. Clark “Transient response of packed beds for thermal energy storage,” Int. J. Heat Mass Transfer, 1984, 27, 1659-1669.
    G. S. Beavers, E. M. Sparrow and D. E. Rodenz “Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres,” J. Appl. Mech., 1973, 40, 655-660.
    G. Chen, U. Tallarek, A. Seidel-Morgenstern and Y. Zhang “Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography,” J. Chromatography A, 1044, 2004, 287-294.
    R. Chein, Y. C. Yang and Y. Lin “Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows,” Electrophoresis, 2005, 27, 640-649.
    S. W. Churchill and H. H. S. Chu “Correlating equations for laminar and turbulent free convection from a horizontal cylinder,” Int. J. Heat Mass Transfer, 1975, 18, 1049.
    B. Eisfeld, K. and Schnitzlein “The influence of confining walls on the pressure drop in packed beds,” Chemical Eng. Science, 2001, 56, 4321-4329
    D. Erickson, D. Sinton and D.-Q. Li “Joule heating and heat transfer in poly(dimethylsiloxane) micro fluidic systems,” Lab Chip, 2003, 3, 141-149.
    C. J. Evenhuis, R. M. Guijt, M. Macka, P. J. Marriott and P. R. Haddad “Internal electrolyte temperature for polymer and fused-silica capillaries used in capillary electrophoresis,” Electrophoresis, 2005, 26, 4333-4344.
    C. J. Evenhuis, R. M. Guijt, M. Macka, P. J. Marriott and P. R. Haddad “Variations of zeta-potential with temperature in fused-silica capillaries used for capillary electrophoresis,” Electrophoresis, 2006, 27, 672-676.
    K. Horiuchi and P. Dutta “Joule heating effects in electroosmotically driven microchannel flows,” Inter. J. Heat and Mass Transfer, 2004, 47, 3085-3095.
    C. T. Hsu “A closure model for transient heat conduction in porous media,” J. Heat Transfer, 1999, 121, 733-739.
    C. T. Hsu, P. Cheng and K. W. Wong “A lumped parameter model for stagnant thermal conductivity of porous media,” J. Heat Transfer, 1995, 117, 264-269.
    R. J. Hunter, Zeta Potential in Colloid Science, principles and applications, New York: Academic, 1988.
    Y. Kang, C. Yang and X. Huang, “Analysis of the electroosmotic flow in a microchannel packed with homogeneous microspheres under Electrokinetic wall effect,” Inter. J. Eng. Science, 2004, 42, 2011-2027.
    Y. Kang, C. Yang and X. Huang “Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres,” Langmuir, 2005, 21, 7598-7607.
    M. Kaviany, Principles of Heat Transfer in Porous Media, Springer- Verlag, 1995.
    C. Keim and M. Ladisch “Model for temperature profiles in large diameter electrochromatography columns,” AIChE J., 2003, 49, 402-410.
    B. J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 2. Data for polymers,” Electrophoresis, 2004, 25, 203-213.
    B. J. Kirby and E. F. Hasselbrink Jr. “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations,” Electrophoresis, 2004, 25, 187-202.
    A. V. Kuzentsov, M. Xiong and D.A. Nield “Thermally developing forced convection in a porous medium: Circular duct with walls at constant temperature, with longitudinal conduction and viscous dissipation effects,” Transport in Porous Media, 2003, 53, 331-345.
    D.-Q. Li, Electrokinetics in Microfluidics, Elsevier, 2004.
    D. J. Laser and J. G. Santiago “A review of micropumps,” J. Micromech. Microeng., 2004, 14, R35-R64.
    A. I. Liapis and B. A. Grimes “Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems,” J. Chromatography A, 2000, 877, 181-215.
    D. Maynes and B. W. Webb “Fully-developed thermal transport in combined pressure and electroosmotically driven flow in microchannels,” J. Heat Transfer, 2003, 125, 889-895.
    A. Nakayama, F. Kuwahara, M. Sugiyama and G.-I. Xu “A two-energy equation model for conduction and convection in porous media,” Inter. J. Heat and Mass Transfer, 2001, 44, 4375-4379.
    D. A. Nield “A note on the modeling of local thermal non-equilibrium in a structured porous medium,” Inter. J. Heat and Mass Transfer, 2002, 45, 4367-4368.
    D.A. Nield and A. Bejan, Convection in Porous Media, Springer-Verlag, New York, 1999.
    N. J. Petersen, R. P. H. Nikolajsen, K. B. Mogensen and J. P. Kutter “Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoresis separation systems: A closer look,” Electrophoresis, 2004, 25, 253-269.
    R.F. Probstein, Physicochemical Hydrodynamics, John Wiley & Sons, New York, 1994.
    A. S. Rathore “Joule heating and determination of temperature in capillary electrophoresis and capillary electrochromatography columns,” J. Chromatography A, 2004, 1037, 431-443.
    A. S. Rathore, K. J. Reynolds and L. A. Colon “Joule heating in packed capillaries used in capillary electrochromatography,” Electrophoresis, 2002, 23, 2918-2928.
    T. T. Razumguzwa and A. T. Timperman “Fabrication and characterization of a fritless microfabricated electroosmotic pump with reduced pH dependence,” Anal. Chem., 2004, 76, 1336-1341.
    F. F. Reuss “Charge-induced flow,” Proceedings of the Imperial Society of Naturalists of Moscow, 1809, 3, 327-344.
    C. L. Rice and R. Whitehead, “Electrokinetic flow in a narrow cylindrical capillary,” J. Phys. Chem., 1965, 69, 4017-4024.
    J. G. Santiago “Electro osmotic flows in microchannels with finite inertial and pressure forces,” Anal. Chem., 2001, 73, 2353-2365.
    V. Singhal, S. V Garimella and A. Raman “Microscale pumping technologies for microchannel cooling systems,” Appl. Mech. Rev., 2004, 57, 191-221.
    D. Sinton and D.-Q. Li “Electroosmotic velocity profiles in microchannels,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 222, 273-283.
    D. Sinton, X.-C. Xuan and D.-Q. Li “Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure,” Experiments in Fluids, 2004, 37, 872-882.
    G. Y. Tang, D. Yan, C. Yang, H. Gong, J. C. Chai and Y. C. Lam “Assessment of Joule heating and its effects on electroosmotic flow and electrophoresis transport of solutes in micro fluidic channels,” Electrophoresis, 2006, 27, 628-639.
    G. Y. Tang, C. Yang, C. J. Chai and H. Q. Gong “Modeling of electroosmotic flow and capillary electrophoresis with Joule heating effect: The Nerst-Planck equation versus the Boltzmann distribution,” Langmuir, 2003, 19, 10975-10984.
    G. Y. Tang, C. Yang, J. C. Chai and H. Q. Gong “Joule heating effect on electroosmotic flow and mass species transport in a microcapillary,” Inter. J. Heat and Mass Transfer, 2004, 47, 215-227.
    K. Vafai and C. L. Tien “Boundary and inertia effects on flow and heat transfer in porous media,” Inter. J. Heat Mass Transfer, 1980, 24, 195-203.
    K. Vafai, Handbook of Porous Media, Marcel Dekker, 2005.
    K. Vafai and S. J. Kim “On the limitations of the Brinkman-Forchheimer extended Darcy equation,” Inter. J. Heat and Fluid Flow, 1995, 16, 11-15.
    N. Wakao and S. Kaguei “Heat and Mass Transfer in Packed Beds,” Gordon and Breach Science Pub, 1982.
    X. Xuan, B. Xu, D. Sinton and D.-Q. Li “Electroosmotic flow with Joule heating effects,” Lab Chip, 2004, 4, 230-236.
    X. Xuan, D. Sinton and D.-Q. Li “Thermal end effect on electroosmotic flow in a capillary,” Inter. J. Heat and Mass Transfer, 2004, 47, 3145-3157.
    X. Xuan and D.-Q. Li “Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis,” J. Chromatography A, 2005, 1064, 227-237.
    X. Xuan and D.-Q. Li “Joule heating effects on peak broadening in capillary zone electrophoresis,” J. Micromech. Microeng., 2004, 14, 1171-1180.
    G. Y. Yang, C. Yang, C. K. Chai and H. Q. Gong “Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels,” Analytica Chimica Acta, 2004, 507, 27-37.
    J. Yang and D. Kwok “Microfluid flow in circular microchannel with electrokinetic effect and Navier’s slip condition,” Langmuir, 2003, 19, 1047-1053.
    R. J. Yang, L. M. Fu and Y. C. Lin “Electro osmotic flow in microchannels,” J. Colloid and Interface Science, 2001, 239, 98-105.
    S. Yao, D. E. Hertzog, S. Zeng, J. C. Mikkelsen and J. G. Santiago “Porous glass electroosmotic pumps: design and experiments,” J. Colloid and Interface Science, 2003, 268, 143-153.
    S. Yao, D. Huber, J. C. Mikkelsen and J. G. Santiago “A large flowrate electroosmotic pump with micron pores,” ASME Inter. Mechanical Eng. Congress and Exposition. November 11-16, New York, 2001.
    S. Yao, A. M. Myers, J. D. Posner, K. A. Rose and J. G. Santiago “Electroosmotic pumps fabricated from porous silicon membranes,” J. Microelectromech. Systems, 2006, vol. 15, no. 3, 717-728.
    S. Yao and J. G. Santiago “Porous glass electroosmotic pumps: theory,” J. Colloid and Interface Science, 2003, 268, 133-142.
    S. Zeng, C.-H. Chen, J. C. Mikkelsen Jr. and J. G. Santiago “Fabrication and characterization of electroosmotic micropumps,” Sensors and Actuators B, 2001, 79, 107-114.
    T. S. Zhao and Q. Liao “Thermal effects on electroosmotic pumping of liquids in microchannels,” J. Micromech. Microeng., 2002, 12, 962-970.

    QR CODE
    :::