跳到主要內容

簡易檢索 / 詳目顯示

研究生: 卓玉婷
Yu Ting Cho
論文名稱: 頭戴式顯示裝置波前檢測
Use Wavefront Sensor to Evaluate the Head Mount Display
指導教授: 梁肇文
Chao Wen Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 81
中文關鍵詞: 波前檢測頭戴式裝置
外文關鍵詞: Wavefront Sensor, Head Mount Display
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Meta 執行長Mark Elliot Zuckerberg 於2021年的Facebook Connect 會議上強調元宇宙(Metaverse)是下一個前線,並說出「從現在開始,我們將以元宇宙為優先,而不是Facebook」,預告未來發展主力將放在自家的頭戴式裝置Oculus上。與此同時,數位晶片相關公司的股票隨之大漲,有許多人都期待元宇宙實際生成的那天。
    頭戴式裝置是元宇宙不可或缺的存在,使用者在戴上裝置後,便會有身臨其境的「沉浸式」體驗。但這類裝置有極大的致命缺點,在長時間使用後會有超越普通3C裝置的疲憊感,甚至會有頭暈、頭痛、噁心、想吐等症狀。此類裝置的發展超過20年,但VAC(Vergence Accommodation)仍然沒有一個客觀的評估標準。
    本篇論文提出一種全新的頭戴式裝置評估系統,主要使用本實驗室開發的高動態範圍 Shack-Hartmann 波前檢測器,利用客製化超大邊長23mm正方形微透鏡陣列(MLA)以及大片幅波前檢測器進行量測工具,待測物使用中強光電提供之混合實鏡(MR)裝置,透過在上面顯示直徑為20 Pixel之白點,並利用程式控制改變光場位置以完成不同視場的量測。最後使用入射光角度回推成像位置,並取得光源的光強、像差等各種資訊。
    量測系統為初步架構,未來仍有許多的改善空間,在科技進步下,能擁有更多不同的待測物,產生更多可參考數據,以期對頭戴式裝置建立一客觀且通用的評估標準。


    Meta CEO Mark Elliot Zuckerberg emphasized at the Facebook Connect conference in 2021 that the Metaverse is the next frontier, and said that "from now on, we will prioritize the Metaverse, not Facebook,", the main force of future development will be on headset “Oculus”. At the same time, stocks of digital chip-related companies have soared, and people are looking forward to the day when the Metaverse actually takes shape.
    Head-mounted devices are an indispensable existence in the Metaverse. After wearing the device, users will have an "immersive" experience. However, the device has a huge fatal disadvantage. After long-term use, it will feel more tired than ordinary 3C devices, and even have symptoms such as dizziness, headache, nausea, and vomiting. Such devices have been developed for more than 20 years, but there is still no objective evaluation criterion.
    This paper proposes a new head-mounted device evaluation system, which mainly uses the high dynamic range Shack-Hartmann wavefront detector developed in our laboratory, and uses a customized super large 23mm square microlens array (MLA) and large format the wavefront detector is used as a measurement tool. The object to be measured uses the mixed Reality (MR) device provided by the medium-intensity photoelectricity. By displaying a white spot with a diameter of 20 pixels on it, and using program control to change the position of the light field to complete different views. Field measurement. Finally, use the angle of incident light to push back the imaging position, and obtain various information such as light intensity and aberration of the light source.
    The measurement system is a preliminary structure, and there is still a lot of room for improvement in the future. With the advancement of science and technology, it can have more different objects to be measured, and generate more reference data, in order to establish an objective and general evaluation of head-mounted devices.

    摘要 II ABSTRACT IV 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 一、 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究動機 3 二、 研究內容及方法 9 2-1 光學理論 9 2-1-1 SEIDEL 像差多項式 9 2-1-2 ZERNIKE像差多項式 11 2-1-3 球差(SPHERICAL) 13 2-1-4 畸變(DISTORTION) 14 2-2 SHACK – HARTMANN波前檢測器 15 2-2-1 量測原理 15 2-2-2 點指派(SPOT ASSIGNMENT)演算法 17 2-2-3 光點質心(CENTROID)計算法 19 2-2-4 高動態範圍SHACK – HARTMANN波前檢測器 20 2-2-5 點光源位置量測 22 三、 實驗方法 24 3-1 SHACK–HARTMANN波前檢測器硬體架構 24 3-2 MR裝置 26 3-3 頭戴式裝置評估系統實驗架構 29 3-4 光學系統校正 31 3-5 FULL FIELD波前掃描 34 3-6 光源背光問題 35 3-7 光強度(INTENSITY)單位校正 38 3-7-1 灰階值(GRAYSCALE)單位介紹 38 3-7-2 PHOTOMETRY CALIBRATION 39 3-8 FULL WAVEFRONT DATA FROM HDR WFS MEASUREMENT 43 3-9 PUPIL SHIFTING 46 四、 實驗分析 50 4-1 FULL FIELD 光源入射角分析 50 4-2 FULL FIELD LOCAL CURVATURE分析 52 4-3 LUMINANCE分析 55 4-3-1 X軸上LUMINANCE 55 4-3-2 FULL FIELD LUMINANCE 57 4-4 FULL FIELD ZERNIKE像差分析 58 4-4-1 ZERNIKE像差波前重建 58 4-4-2 ZERNIKE像差PEAK TO VALLEY 60 五、 結論 61 參考文獻

    [1]. D. Malacara-Doblado and I. Ghozeil, "Hartmann, Hartmann-Shack, and other screen tests," Optical Shop Testing 3, 361-397 (2007).
    [2]. D. Malacara, Optical shop testing (John Wiley & Sons, 2007), Vol. 59.
    [3]. B. C. Platt and R. Shack, "History and principles of Shack-Hartmann wavefront sensing," (SLACK Incorporated Thorofare, NJ, 2001).
    [4]. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor," JOSA A 11, 1949-1957 (1994).
    [5]. B. Schäfer and K. Mann, "Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann-Shack wave-front sensor," Applied optics 41, 2809-2817 (2002).
    [6]. J. Ares, T. Mancebo, and S. Bara, "Position and displacement sensing with Shack–Hartmann wave-front sensors," Applied Optics 39, 1511-1520 (2000).
    [7]. M. Nicolle, T. Fusco, G. Rousset, and V. Michau, "Improvement of Shack–Hartmann wave-front sensor measurement for extreme adaptive optics," Optics letters 29, 2743-2745 (2004).
    [8]. G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, "Shack Hartmann wave-front measurement with a large F-number plastic microlens array," Applied optics 35, 188-192 (1996).
    [9]. S. Yano, S. Ide, T. Mitsuhashi, and H. Thwaites, "A study of visual fatigue and visual comfort for 3D HDTV/HDTV images," Displays 23, 191-201 (2002).
    [10]. J. L. Semmlow and D. Heerema, "The role of accommodative convergence at the limits of fusional vergence," Investigative ophthalmology & visual science 18, 970-976 (1979).
    [11]. R. Suryakumar and W. R. Bobier, "Gain and movement time of convergence-accommodation in preschool children," Optometry and vision science 81, 835-843 (2004).
    [12]. T. Inoue and H. Ohzu, "Accommodative responses to stereoscopic three-dimensional display," Applied optics 36, 4509-4515 (1997).
    [13]. M. Emoto, T. Niida, and F. Okano, "Repeated vergence adaptation causes the decline of visual functions in watching stereoscopic television," Journal of display technology 1, 328 (2005).
    [14]. C. M. Schor, "A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses," Optometry and vision science: official publication of the American Academy of Optometry 69, 258-269 (1992).
    [15]. F. W. Campbell, "The depth of field of the human eye," Optica Acta: International Journal of Optics 4, 157-164 (1957).
    [16]. S. Reichelt, R. Häussler, G. Fütterer, and N. Leister, "Depth cues in human visual perception and their realization in 3D displays," in Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, (International Society for Optics and Photonics, 2010), 76900B.
    [17]. T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, "Stereoscopic 3‐D display with optical correction for the reduction of the discrepancy between accommodation and convergence," Journal of the Society for Information Display 13, 665-671 (2005).
    [18]. G.-A. Koulieris, B. Bui, M. S. Banks, and G. Drettakis, "Accommodation and comfort in head-mounted displays," ACM Transactions on Graphics (TOG) 36, 1-11 (2017).
    [19]. H. Hua, "Enabling focus cues in head-mounted displays," Proceedings of the IEEE 105, 805-824 (2017).
    [20]. A. Wilson and H. Hua, "Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses," Optics express 27, 15627-15637 (2019).
    [21]. Y. Huo, J. Zhang, and R. Wang, "Research on improving VAC of auto-stereoscopic 3D display via monocular multi-view," in Journal of Physics: Conference Series, (IOP Publishing, 2020), 012226.
    [22]. L. E. Buck, M. K. Young, and B. Bodenheimer, "A comparison of distance estimation in HMD-based virtual environments with different HMD-based conditions," ACM Transactions on Applied Perception (TAP) 15, 1-15 (2018).
    [23]. O. Cakmakci, D. M. Hoffman, and N. Balram, "31‐4: Invited Paper: 3D Eyebox in Augmented and Virtual Reality Optics," in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2019), 438-441.
    [24]. J. W. Kelly, B. C. Klesel, and L. A. Cherep, "Visual stabilization of balance in virtual reality using the HTC Vive," ACM Transactions on Applied Perception (TAP) 16, 1-11 (2019).
    [25]. H. Lee, Y. Li, S.-C. Yeh, Y. Huang, Z. Wu, and Z. Du, "ADHD assessment and testing system design based on virtual reality," in 2017 2nd International Conference on Information Technology (INCIT), (IEEE, 2017), 1-5.
    [26]. E. Luckett, "A quantitative evaluation of the htc vive for virtual reality research," (The University of Mississippi, 2018).
    [27]. H. Son and S. Kwon, "Study on Distortion and Field of View of Contents in VR HMD," International journal of advanced smart convergence 6, 18-25 (2017).
    [28]. J. Martschinke, J. Martschinke, M. Stamminger, and F. Bauer, "Gaze-dependent distortion correction for thick lenses in hmds," in 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), (IEEE, 2019), 1848-1851.
    [29]. V. Lakshminarayanan and A. Fleck, "Zernike polynomials: a guide," Journal of Modern Optics 58, 545-561 (2011).
    [30]. https://doc.comsol.com/5.4/doc/com.comsol.help.roptics/roptics_ug_optics.6.56.html, "Monochromatic Aberrations and Zernike Polynomials."
    [31]. P. Mouroulis, J. Macdonald, and J. Macdonald, Geometrical optics and optical design (Oxford University Press Oxford, 1997), Vol. 39.
    [32]. https://www.electrooptics.com/viewpoint/new-wave-quality-control-shack-hartmann-wavefront-sensing, "A new wave of quality control: Shack-Hartmann wavefront sensing."
    [33]. C. Leroux and C. Dainty, "A simple and robust method to extend the dynamic range of an aberrometer," Optics express 17, 19055-19061 (2009).
    [34]. S. Groening, B. Sick, K. Donner, J. Pfund, N. Lindlein, and J. Schwider, "Wave-front reconstruction with a Shack–Hartmann sensor with an iterative spline fitting method," Applied Optics 39, 561-567 (2000).
    [35]. 潘淑芳, "A similarity guided Spots Sorting Method to increase the Dynamic Range of a Shack Hartmann Sensor," 國立中央大學,碩士論文 (2013).
    [36]. 楊東諺, " Algorithm error analysis for relationship of centroid of spot and ray angle," 國立中央大學. (2017).
    [37]. 曾凱佑, "Preliminary Research on the Wavefront Measurement of Wearable Display Device," (2019).
    [38]. WaveOptics, "https://waveoptics.ar/waveguides/vulcan/."
    [39]. M. S. Rea, M. G. Figueiro, A. Bierman, and R. Hamner, "Modelling the spectral sensitivity of the human circadian system," Lighting Research & Technology 44, 386-396 (2012).
    [40]. H. Hua, P. Krishnaswamy, and J. P. Rolland, "Video-based eyetracking methods and algorithms in head-mounted displays," Optics Express 14, 4328-4350 (2006).

    QR CODE
    :::