跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭玫玲
Mei-Ling Jheng
論文名稱: 金、鉑擔載於二氧化鈦上進行光催化甲醇重組產氫之研究
studies on the photocatalytic hydrogen production by methanol reforming over Pt/TiO2 and Au/TiO2
指導教授: 楊思明
Sze-Ming Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 95
語文別: 中文
論文頁數: 77
中文關鍵詞: 二氧化鈦甲醇光催化氫氣
外文關鍵詞: hydrogen, TiO2, photocatalytic, methanol
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦是目前使用率最高的半導體光觸媒,因其有照光後不發生光腐蝕、且耐酸鹼、化學性質穩定、對生物無毒性、來源豐富等優異的特性,所以運用很廣泛,可用來抗菌除臭、分解污水中的有機物質,或是淨化廢氣等等。本研究藉由二氧化鈦來光催化甲醇重組產生氫氣,提供無污染、無害的潔淨能源。
    純二氧化鈦經紫外光照射所產生的電子電洞很容易在其內部或表面重新結合,所以活性很差。如果在二氧化鈦表面擔載金屬,光生電子會遷移到金屬上,可防止電子與電洞的再結合,增加觸媒活性。實驗使用光沉積法與沉澱固著法將Pt或Au金屬擔載在二氧化鈦上,觀察不同擔載金屬、擔載方法、合成及反應容器材質,及合成、反應時使用的光源對氫產量的影響。
    研究結果顯示,以光沉積法在石英槽中合成的Pt/TiO2觸媒,氫產量比在玻璃槽中合成的Pt/TiO2觸媒還多。因石英槽能穿透的紫外光較多,可利用的光子數量也較多,使得更多的Pt離子能在二氧化鈦表面還原、沉積,金屬沉積量大,所以觸媒的活性好。在石英槽中進行光催化反應的氫產量也會比玻璃槽的多,因為穿透石英槽的紫外光多,使得二氧化鈦被激發產生的電子也多,可以還原更多的甲醇增加氫產量。使用光強度較強的光源合成觸媒,氫產量也會比較多,因沉積的金屬顆粒較小,二氧化鈦與金屬接觸邊界增加,使得活性位置變多,氫產量也跟著增加。光催化反應使用強度較強的光源,對增加氫產量也有幫助,可激發更多的電子來還原甲醇。大致上二氧化鈦來源為AMT-100的觸媒反應活性較好,因擔載其上的金屬粒子特別小,造成二氧化鈦與金屬接觸邊界增加,活性位置增加,所以產氫量多。以Au/TiO2觸媒而言,使用沉澱固著法所製備的觸媒活性比光沉積法的好,雖然兩種方法所製備出來的觸媒其金屬擔載量差不多,但因使用沉澱固著法擔載上去的金屬顆粒較小,活性位置多,所以氫產量較大。


    In this study, we report the production of hydrogen by methanol reforming reaction under ultraviolet light irradiation (350 nm or 306 nm) over Pt/TiO2 and Au/TiO2. The effect of catalyst preparation methods, materials of the preparation and reaction vessels, and UV light sources are studied. The catalysts are characterized by XRD, TEM, ICP and BET.
    The catalyst Pt/TiO2 is prepared by photodeposition method. The activity for hydrogen production is higher when the catalyst is prepared in a quartz vessel instead of a glass vessel. Quartz is more transparent for UV light hence more Pt ions are reduced on the surface of TiO2 and higher activity is obtained. Higher activity is also observed in a quartz reaction vessel. The catalysts prepared with higher intensity and shorter wavelength UV light (306 nm) show higher activities. The particle sizes of Pt on TiO2 are smaller when Pt is deposited under higher intensity and shorter wavelength UV light, hence larger contact area between Pt and TiO2 is created.
    For Au/TiO2 catalysts, the activity is higher for catalyst prepared from deposition precipitation (DP) method than photodeposition method. The amounts of Au loading are similar in catalysts prepared from both methods; however, the particle size is smaller in catalyst prepared by DP method. The smaller metal particle sizes increase the more active sites in contact area between Au and TiO2 create.

    目錄 摘要......................................................I Abstract.................................................Ⅲ 目錄.....................................................IV 圖目錄..................................................VII 表目錄..................................................XII 第一章 緒論.............................................1 第二章 文獻回顧.........................................3 2-1 氫氣的製備 ........................................3 2-2 光觸媒............................................4 2-2-1 光觸媒的歷史發展.............................4 2-2-2 光觸媒的反應特性.............................5 2-2-3 光觸媒材料及其反應原理 .....................6 2-3 二氧化鈦結構、物理及化學性質 .....................8 2-4 影響光催化速率的因素.............................12 2-5 觸媒製備.........................................19 2-6 產氫方式.........................................21 2-7 產氫機制.........................................23 2-8 研究目的.........................................27 第三章 實驗方法..........................................28 3-1 實驗藥品.........................................28 3-2 實驗儀器.........................................29 3-3 實驗方法.........................................30 3-3-1 光沉積法製備觸媒............................30 3-3-2 沉澱固著法製備觸媒..........................32 3-4 鑑定分析.........................................34 3-4-1 粉末X光繞射儀(XRD)..........................34 3-4-2 穿透式電子顯微鏡(TEM).......................35 3-4-3 BET法測量比表面積...........................35 3-4-4 感應耦合電漿原子發射光譜儀(ICP-AES).........36 3-4-5 甲醇重組反應活性測試........................37 第四章 結果與討論........................................40 4-1 觸媒鑑定.........................................40 4-1-1 XRD晶體分析.................................40 4-1-2 ICP元素分析.................................47 4-1-3 觸媒比表面積分析............................50 4-1-4 TEM影像分析.................................53 4-2 光催化甲醇重組反應...............................58 4-2-1 1 wt%Pt/TiO2觸媒的反應活性.................60 4-2-2 1 wt%Au/TiO2觸媒的反應活性.................67 4-2-3 不同甲醇濃度對氫產量的影響..................69 4-2-4 擔載不同金屬對氫產量的影響..................70 第五章 結論..............................................72 參考文獻.................................................74

    [1] W. J. Piel, Fuel Process. Technol., 71 167(2001).
    [2] S. Velu, K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, J. Catal., 194 373(2000).
    [3] T. Klaiber, J. Power Sources, 61 61(1996).
    [4] P. Ekdunge, M. Råberg, Int. J. Hydrogen Energy, 23 381(1998).
    [5] M. Specht, F. Staiss, A. Bandi, T. Weimer, Int. J. Hydrogen Energy, 23 387(1998).
    [6] B. Höhlein, J. Bøgild-Hansen, P. Bröckerhoff, G. Colsman, B. Emonts, R. Menzer, E. Riedel, J. Power Sources, 61 143(1996).
    [7] S. N. Frank, A. J. J. Bard, Phys. Chem., 81 1484-1486(1977).
    [8] S. N. Frank, A. J. J. Bard, Phys. Chem., 91 5076-5083(1987).
    [9] A. Fujishima, K. Honda, Nature, 238 37-38(1972).
    [10] B. K. Vainshtein, W. M. Fridkin, V. L. Indenbom. Structure of Crystals.Berlin:Macmillan India Ltd, (1994).
    [11] Buchanan Relva C and Park, Taeun. Materials Crystal Chemistry, New York: Marcel Dekker, Inc., (1997).
    [12] A. Sclafani, L. Palmisano, M. J. Schiavello, Phys. Chem., 94 829-832(1990).
    [13] R. W. Matthews, JPPAC., 66 355-366(1992).
    [14] C. Richard, A. M. Martre, P. J. Boule, Photochem. Photobiol. A: Chem., 66 225-234(1992).
    [15] J. Cunningham, S. J. Srijaranai, Photochem. Photobiol. A:Chem., 58 361-371(1991).
    [16] M. Anpo, T .Shima, S. Kodam, et al. J. Phys. Chem., 91 4305-4310 (1987).
    [17] C. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D. K. Sharma, J. Am. Chem. Soc., 107 8054-8059(1985).
    [18] M. L. Trudeau, J. Y. Ying, Nanostruct. Mater., 7 245-258(1996).
    [19] M. Anpo, N. Aikawa, S. Kodama, et al. J. Phys. Chem., 88 2569-2572(1984).
    [20] M. Walden, X. Lai, D. W. Goodman, Science, 281 1647-1650(1998).
    [21] M. Harada, T .Ueda, Chem. Phys. Lett., 106 229-231(1984).
    [22] M. Haruta, N. Yamada, T. Kobayahsi, S. Iijima, J. Catal., 115 (1989).
    [23] T. Akita, P. Lu, K. Tanaka, S. Ichikawa, M. Haruta, Surf. Interface Anal., 31 73-78(2001).
    [24] W. H. Cheng, Acc.Chem. Res., 32 685(1999).
    [25] I. A. Fisher, A. T. Bell, J. Catal., 184 357(1999).
    [26] N. Takezawa, N. Iwasa, Catal. Today, 36 45(1997).
    [27] J. P. Breen, J. R. H. Ross, Catal. Today, 52 521(1999).
    [28] T. Talahashi, M. Inoue, T. Kai, Appl.Catal. A, 218 189(2001).
    [29] J. R. Rostrup-Nielsen, T. S. Christensen, I. Dybkjaer, Recent Advances in Basic and Applied Aspects of Industrial Catalysis, 113 81(1998).
    [30] Y. M. Lin, M. H. Rei, Int. J. Hydrogen Energy, 25 211(2000).
    [31] W. Wiese, B. Enonts, R. Peters, J. Power Source, 84 187(1999).
    [32] C. J. Jiang, D. L. Trimm, M. S. Wainwright, Appl. Catal. A, 97 145(1993).
    [33] M. L. Cubeiro, J. L. G. Fierro, J. Catal., 179 150(1998).
    [34] S. Velu, K. Suzuki, T. Osaki, Catal. Lett., 62 159(1999).
    [35] F. W. Chang, H. Y. Yu, L. S. Roselin, H. C. Yang, Appl. Catal. A, 290 138-147(2005).
    [36] S. Velu, K. Suzuki, T. Osaki, Chem. Comm., 2341(1999).
    [37] S. Murcia-Mascaros, R. M. Navarro, L. Gomez-Sainero, U. Costantino, M. Nocchetti, J. L. G. Fierro, J. Catal., 198 338(2001).
    [38] S. Velu, K. Suzuki, M. P. Kapoor, F. Ohashi, T. Osaki, Appl. Catal. A, 213 47(2001).
    [39] J. P. Shen, C. Song, Catal. Today, 77 89(2002).
    [40] S. Velu, K. Suzuki, Top. Catal., 22 235(2003).
    [41] K. Geissler, E. Newson, F. Vogel, T. Truong, P. Hottinger, and A. Wokaun, Phys. Chem. Chem. Phys., 3 189(2001).
    [42] S. Velu, K. Suzuki, J. Phys. Chem. B, 106 12737(2002).
    [43] N. L. Wu, M. S. Lee, Z. J. Pon, J. Z. Hsu, J. Photochem. Photobiol. A, 163 277-280(2004).
    [44] N. L. Wu, M. S. Lee, Int. J. Hydrogen Energy, 29 1601-1605(2004).
    [45] J. Chen, D. F. Ollis, W. H. Rulkens, H. Bruning ,Water Res., 669 76(1999).
    [46] L. S. Al-Mazroai et al. Catal. Today, 122 46-50(2007).
    [47] A. Galinska, J. Walendziewski, Energy Fuels, 19 1143-1147(2005).
    [48] M. K. I. Senevirathna et al. Sol. Energy Mater. Sol. Cells, 90 2918-2923(2006).
    [49] T. Miyao et al. Appl. Catal. A, 299 285-291(2006).
    [50] T. Sreethawong, S. Yoshikawa ,Commun., 6 661-668(2005).
    [51] T. Kawai, T. Sakata, Chem. Commun., 694 4(1980).
    [52] T. Kawai, T. Sakata, Chem. Lett., 81 4(1981).
    [53] T .Sakata, Y. Kawai, Chem. Phys. Lett., 80 341-4(1981).
    [54] T. Sakata, T. Kawai, K. Hashimoto, Chem. Phys. Lett., 88 50-4(1982).
    [55] I. Jones, R. Bennett and M. Bowker, Surf. Sci., 439 235(1999).
    [56] M. Bowker, L. Millard, J. Greaves, D. James, J. Soares, Gold Buelletin, 37 3-4(2004).
    [57] Q. Jiang, S. Zhang, M. Zhao, Mater. Chem. and Phys., 82 225-227(2003).
    [58] Y. Ebina, T. Sasaki, M. Harada, M. Watanabe, Chem. Mater., 14 4390-4395(2002).
    [59] C. K. Chang, C. T. Yeh, Y. J. Chen, Appl. Catal. A, 174 13(1998).

    QR CODE
    :::