跳到主要內容

簡易檢索 / 詳目顯示

研究生: 宋睿唐
Rui-tang Sung
論文名稱: 濱海鹽水層二氧化碳地質封存移棲特性數值模擬評估
Numerical Assessment of the Migration Characteristics of CO2 Geological Sequestration in Deep Saline Aquifer
指導教授: 李明旭
Ming-hsu Li
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 水文與海洋科學研究所
Graduate Instittue of Hydrological and Oceanic Sciences
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 132
中文關鍵詞: 二氧化碳地質封存彰濱工業區封存場址TOUGHREACT/ECO2N Simulator局部加密網格
外文關鍵詞: CO2 Geological Sequestration, Changhua Coastal Industrial Park Site, TOUGHREACT/ECO2N Simulator, Local Refinement Grids
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應全球暖化國際上逐年減少碳排放量的趨勢及壓力日增,台灣積極推動二氧化碳捕捉及地質封存研究。目前台灣地區二氧化碳排放量估計約為每年2.4億噸,主要的碳排放源為火力發電廠及工業生產(如煉鋼廠、水泥廠及石化產業)約各佔台灣年排放量1/3。因石化燃料須從國外進口加上冷卻用水取得方便等因素,故大多沿台灣北海岸和西海岸分布。而台灣西海岸地區存在廣大發展良好的沉積層環境,深具發展鹽水層二氧化碳地質封存的潛能。過去調查初步選出三個適合的區域,由北至南分別為觀音高地、台西盆地及台南盆地。其中彰濱工業區二氧化碳潛勢封存場址位在台西盆地東南側,附近主要碳排放源為台中電廠及麥寮電廠。
    為瞭解封存場址特性,進行一系列地球物理探測及應用數值模擬工具進行評估。本研究以美國勞倫斯柏克萊國家實驗室發展的TOUGHREACT/ECO2N模式應用現有能取得的封存場址資料進行一系列的數值模擬評估。所推估之儲集層為桂竹林層、南莊層及觀音山砂岩上部,約400公尺厚,低滲透性蓋岩為錦水頁岩位在桂竹林層頂部。封存場址地層為傾斜層狀非均質地層,大致由東向西逐漸變淺,主要由砂頁岩互層組成。模擬範圍為11 km 11 km,採單井灌注評估,灌注口深度為2670公尺,二氧化碳灌注率假設為每年一百萬噸,灌注期為五十年,整個模擬期間為五百年。本研究主要針對二氧化碳灌注階段造成地層孔隙壓力上升、灌注期間二氧化碳的相變過程及灌注口孔隙水乾涸及伴隨NaCl沉澱,以及停止灌注後二氧化碳移棲範圍特性及其垂直剖面結構等,探討封存機制及評估是否有逸漏的可能,並針對不同模擬案例進行比較,如非加密或局部加密網格及考慮地化反應傳輸或物理傳輸機制等。
    模擬500年結果顯示,考慮地化反應傳輸模擬案例,二氧化碳移棲對地層孔隙率的變化影響幅度很小(最大孔隙率改變減少1.84 10-3及增加7.43 10-4),對側向移棲特性無顯著影響。局部加密網格有助於解析灌注井周遭灌注二氧化碳的相變過程及CO2 Plume在層狀非均質地層的空間分布特性。各模擬案例的二氧化碳最大移棲距離為2700公尺,主要朝台灣海峽方向移棲,而向陸地方向的最大移棲距離為2300公尺。


    Reductions of CO2 emissions to mitigate global warming are an inevitable trend in the world. Taiwan government has been aggressively promoting the studies of carbon dioxide capture and carbon dioxide geological sequestration (CGS) to investigate the feasibility of such mitigation techniques. The annual CO2 emission in Taiwan was estimated as high as 0.24 billion tons. The majority of CO2 emission sources are the thermal power plants and industrial sectors (e.g., cement mills, steel mills, petrochemical industry etc.), and each contributed about one third of annual CO2 emissions in Taiwan. Due to requirements of fossil-fuel importation and cooling water acquirements, most of thermal power plants distributed along the North and West costal lines of Taiwan. Advantages of extensive and well-developed sedimentary formations along West costal area of Taiwan provide massive volume for CGS practices. Preliminary investigations showed that the Kuanyin Plateau, Taihsi Basin, and Tainan Basin are the potential area for CGS. The Changhua Coastal Industrial Park (CCIP) potential site was located in the southern part of the Taihsi Basin and near by the Taichung Power Plant and Mailiao Power Plant.
    To evaluate the feasibility and risk of CGS practices in Taiwan, intensive geophysical explorations and numerical assessments are needed. In this study, we utilize the TOUGHREACT/ECO2N simulator to perform a series of numerical simulation and assessment for CGS at the CCIP Site. Objective reservoir was located from Kueichulin Formation, to upper part of Kuanyinshan Sandstone with thickness of 400 meter and beneath the low permeability caprock by the Jinshui Shale. Sloping and layered heterogeneous formations were composed of interbedding sandstone and shale that became thinner from East to West. Simulation area is 121 km2 (11 km 11 km) with single injection well in the center and injection point at -2674 meter. Injection of CO2 is assumed with a constant injection rate of 1 Mt/year for the first fifty years and total simulation period is 500 years. Characteristics of pore pressure differences, phase change of injected CO2, pore water drying-out, and subsequent halite precipitation during CO2 injection period and migration behavior of CO2 plume, pattern of cross-sectional CO2 plume, and trapping component analysis are simulated and analyzed with several simulation studies (e.g., cases of the non-refined grids and local refined grids, physical transport and reactive-transport).
    At 500 years, simulation results show that the effects of porosity differences are minor to the lateral migration of CO2 Plume. The simulation cases with local refined grids can improve on phase change evolution of injected CO2 and the spatial distribution pattern of CO2 plume in sloping and layered heterogeneous formations. The maximum migration distances of CO2 plume are 2700 meter and 2300 meter toward upslope direction of formation below the Taiwan Strait and toward downslope direction of onshore area, respectively.

    摘 要 iii ABSTRACT v 誌謝 vii 目錄 ix 圖目錄 xi 表目錄 xvii 一、 緒論 1 1-1 前言 1 1-2 研究目的 3 1-3 論文架構 4 二、 文獻回顧 7 2-1 二氧化碳地質封存試驗場址 8 2-2 二氧化碳地質封存所引致相關物理化學現象 11 2-3 二氧化碳封存機制 16 2-4 二氧化碳數值模擬或數值評估 19 2-5 二氧化碳地質封存模擬工具(地化反應傳輸) 21 2-6 模式應用回顧(場址特性) 24 三、 研究場址介紹 33 3-1 地球物理探測成果 33 3-2 水文地質架構 36 3-3 水文地球化學系統 40 四、 研究方法 47 4-1 研究流程 47 4-2 TOUGHREACT模式 48 4-3 ECO2N模組 56 4-4 加密網格產生器 57 4-5 二氧化碳地質封存機制的評估方法 62 五、 案例模擬 65 5-1 初始條件及邊界條件 67 5-2 多相流物理傳輸機制(不考慮地溫梯度) 70 5-3 多相流物理傳輸機制(考慮地溫梯度) 76 5-4 背景地化反應(不考慮地溫梯度) 82 5-5 地化反應傳輸機制(不考慮地溫梯度) 84 六、 結果與討論 97 6-1 灌注期間CO2相變過程及地球化學過程 97 6-2 停止灌注期間CO2 Plume移棲特性 108 6-3 CO2 Plume剖面的結構 111 6-4 CO2封存特性評估 114 七、 結論與建議 119 7-1 結論 119 7-2 建議 121 八、 參考文獻 123

    ﹝1﹞ 林世勛,「注入井配置對背斜構造中二氧化碳地質封存潛勢之影響:以桃園台地為例」,國立中正大學應用地球物理研究所,碩士論文,101年。
    ﹝2﹞ 吳承諺,「在控制壓力積聚條件下台灣西部深層鹽水含水層二氧化碳地質封存數值模擬」,國立中正大學,碩士論文,102年。
    ﹝3﹞ 邱千軒,「鹽水層二氧化碳封存之溶液相及離子相二氧化碳前鋒推進方程式之研究」,國立成功大學,碩士論文,100年。
    ﹝4﹞ 邱琪惠,「注儲二氧化碳之飽和度前鋒在鹽水層移棲行為研究」,國立成功大學資源工程學系,碩士論文,102年。
    ﹝5﹞ 許旆華,「台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義」,國立中央大學,碩士論文,102年。
    ﹝6﹞ 焦中輝、林俊余、俞旗文、盧佳遇,「台西盆地南段晚中新世至更新世沉積地層作為碳地質封存層之探討研究」,鑛冶,第55卷第1期,109~128頁,100年。
    ﹝7﹞ 楊健男,「二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例」,國立中央大學地球物理研究所,碩士論文,99年。
    ﹝8﹞ 楊慶中,「二氧化碳地質封存水力-力學耦合行為之研究-以彰濱工業區為例」,國立中央大學,碩士論文,102年。
    ﹝9﹞ 賴郡曄,「數值模擬二氧化碳–水–長石系統之化學及礦物反應變化」,國立成功大學地球科學系,碩士論文,101年。
    ﹝10﹞ Alkan, H., Y. Cinar, and E. B. Ülker, 2010, “Impact of capillary pressure, salinity and in situ conditions on CO2 injection into saline aquifers”, Transport in Porous Media, Vol. 84, p.799-819.
    ﹝11﹞ Anderson, G., 2005, Thermodynamics of Natural Systems, 2nd ed., Cambridge University Press, pp.664.
    ﹝12﹞ André, L., P. Audigane, M. Azaroual, A. Menjoz, 2007, “Numerical modeling of fluid–rock chemical interactions at the supercritical CO2–liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France)”, Energy Conversion and Management, Vol. 48, p.1782-1797.
    ﹝13﹞ Appelo, C. A. J., D. Postma, 2005, Geochemistry, Groundwater and Pollution, 2nd ed., CRC Press, pp.683.
    ﹝14﹞ Athy, L. F., 1930, “Density, porosity, and compaction of sedimentary rocks”, AAPG Bulletin, Vol. 14, p.1-24.
    ﹝15﹞ Azaroual, M., C. Kervévan, M. V. Durance, S. Brochot, P. Durst, 2004, SCALE2000 (V3.1): Logiciel de calculs thermodynamiques et cinétiques applicables aux saumures pétrolières, hydrothermales et industrielles (User’s Manual in French), BRGM.
    ﹝16﹞ Bachu, S., W. D. Gunter, E. H. Perkins, 1994, “Aquifer disposal CO2: hydrodynamic and mineral trapping”, Energy Conversion and Management, Vol. 35(4), p.269-279.
    ﹝17﹞ Bachu, S., 2008, “CO2 storage in geological media: Role, means, status and barriers to deployment”, Progresss in Energy and Combustion Science, Vol. 34, p.254-273.
    ﹝18﹞ Bear, J., 1988, Dynamics of Fluids in Porous Media, (corrected republication of the work published by Elsevier, 1972), Dover Publications, pp.784.
    ﹝19﹞ Bonilla, M. G., 1975, A Review of Recently Active Fault in Taiwan, Open-File Report 75-41. U. S. Geological Survey, Menlo Park, CA.
    ﹝20﹞ Carman, P. C., 1954, Flow of Gas through Porous Media, Butterworths.
    ﹝21﹞ CC&ST, Carbon Capture and Sequestration Technologies, official website at http://sequestration.mit.edu
    ﹝22﹞ Celia, M. A., J. M. Nordbotten, 2009, “Practical modeling approaches for geologicalstorage of carbon dioxide”, Ground Water, Vol. 47(5), p.627-638.
    ﹝23﹞ CGAL, 2013, Computational Geometry Algorithms Library (CGAL) User and Reference Manual: All Parts, official website at http://www.cgal.org/
    ﹝24﹞ Cheng, C.-T., Chiou, S.-J., Lee, C.-T., Tsai, Y.-B., 2007, “Study on probabilistic seismichazard maps of Taiwan after Chi-Chi earthquake”, Journal of GeoEngineering Vol. 2(1), p.19-28.
    ﹝25﹞ Class, H., A. Ebigbo, R. Helmig, H. K. Dahle, J. M. Nordbotten, M. A. Celia, P. Audigane, M. Darcis, J. Ennis-King • Y. Fan • B. Flemisch • S. E. Gasda, M. Jin, S. Krug, D. Labregere, A. N. Beni, R. J. Pawar, A. Sbai, S. G. Thomas, L. Trenty, L. Wei, 2009, “A benchmark study on problems related to CO2 storage in geologic formations: Summary and discussion of the results”, Computer & Geoscience, Vol. 13, p.409-434.
    ﹝26﹞ Corey, A. T., 1954, “The interrelation between gas and oil relative permeabilities” Producers Monthly, Vol. 19 (1), p.38-41.
    ﹝27﹞ Dickinson, G., 1953, “Geological aspects of abnormal reservoir pressures in Gulf CoastLouisana”, AAPG Bulletin, Vol. 37(2), p.410-432.
    ﹝28﹞ Domenico, P. A. and F. W. Schwartz, 1988, Physical and Chemical Hydrogeology, 2nd ed., Wiley, pp.528.
    ﹝29﹞ Dong, J.-J., J.-Y. Hus, W.-J. Wu, T. Shimamoto, J.-H. Hung, E.-C. Yeh, Y.-H. Wu, H. Sone, 2010 “Stress-dependence of the permeability and porosity of sandstoneand shale from TCDP Hole-A”, International Journal of Rock Mechanics & Mining Sciences, Vol. 47, p.1141-1157.
    ﹝30﹞ Doughty, C., K. Pruess, S. M. Benson, B. M. Freifeld, 2004, Hydrological and Geochemical Monitoring for a CO2 Sequestration Pilot in a Brine Formation, Tech-nical Report LBNL-55104. Lawrence Berkeley National Laboratory, Berkeley, CA.
    ﹝31﹞ Ennis-King, J., L. Paterson, 2007, “Coupling of geochemical reactions and convective mixing in the long-term geological storage of carbon dioxide” International Journal of Greenhouse Gas Control, Vol. 1, p.86-93.
    ﹝32﹞ García, J., K. Pruess, 2000, Local Grid Refinement for Multi-Scale Geothermal Reservoir Simulation with TOUGH2, Technical Report LBNL-45646. LawrenceBerkeley National Laboratory, Berkeley, CA.
    ﹝33﹞ Gasda, S. E., S. Bachu, and M. A. Celia, 2004, “The potential for CO2 leakage from storage sites in geological media: analysis of well distribution in mature sedimentary basins. Environmental well distribution in mature sedimentary basins”, Environmental Geology, Vol. 46, p.707-720.
    ﹝34﹞ Gaus, I., M. Azaroual, I. Czerichowski-Lauriol, 2005, “Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea)”, Chemical Geology, Vol. 217, p.310-337.
    ﹝35﹞ Gaus, I., P. Audigane, L. André, J. Lions, N. Jacquemet, P. Durst, I. Czerichowski-Lauriol, and M. Azaroual, 2008, “Geochemical and solute transport modelling for CO2 storage, what to expect from it?”, International Journal of Greenhouse Gas Control, Vol. 2, p.605-625.
    ﹝36﹞ Ghali, S., 2008, Introduction to Geometric Computing, Springer, pp.342.
    ﹝37﹞ Ghesmat, K., H. Hassanzadeh, and, J. Abedi, 2011a, “The impact of geochemistry on convective mixing in a gravitationally unstable diffusive boundary layer in porous media: CO2 storage in saline aquifers”, Journal of Fluid Mechanics, Vol. 673, p.480-512.
    ﹝38﹞ Ghesmat, K., H. Hassanzadeh, and J. Abedi, 2011b, “The effect of anisotropic dispersion on the convective mixing in long-term CO2 storage in saline aquifers” Fluid Mechanics And Transport Phenomena, Vol. 57(3), p.561-570.
    ﹝39﹞ Gunter, W. D., B. Wiwchar and E. H. Perkins, 1997, “Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling”, Mineral. Petrol., Vol. 59, p.121-140.
    ﹝40﹞ Gunter, W. D., E. H. Perkins, I. Hutcheon, 2000, “Aquifer disposal of acid gases: modelling of water-rock reactions for trapping of acid wastes”, Applied Geochemistry, Vol. 15, p.1085-1095.
    ﹝41﹞ Helgeson, H. C. D. H. Kirkham, D. C. Flowers, 1981, “Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures IV: Calculation of activity coefficients, osmotic coeffieients, and apparent molal and standard and relative partial molal properties to 600 C and 5Kb”, American Journal of Science, Vol. 218, p.1249-1516.
    ﹝42﹞ Hesse, M. A., F. M. Orr Jr, and H. A. Tchelepi, 2008, “Gravity currents with residual trapping”, Journal of Fluid Mechanics, Vol. 611, p.35-60.
    ﹝43﹞ Hoholick, J. D., T. Metarko, P. E. Potter, 1984, “Regional variations of porosity andcement: St. Peter and Mount Simon sandstones in Illinois Basin”, AAPG Bulletin, Vol. 68 (6), p.753-764.
    ﹝44﹞ Holloway, S., D. Savage, 1993, “The potential for aquifer disposal of carbon dioxide in the UK”. In: Riemer, W.F. (Ed.), Proceedings of the International EnergyAgency Carbon Dioxide Disposal Symposium, Pergamon Press, Oxford. EnergyConservation and Management, Vol. 34(9–11), p.925-932.
    ﹝45﹞ Hsieh, B.-Z., L. Nghiem, C.-H. Shen, Z.-S. Lin, 2013, “Effects of complex sandstone–shale sequences of a storage formation on the risk of CO2 leakage: Case study from Taiwan”, International Journal of Greenhouse Gas Control, Vol. 17, p.376-387.
    ﹝46﹞ IPCC, 2005, IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press (In Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.), Prepared by Working Group III of the Intergovernmental Panel on Climate Change).
    ﹝47﹞ Juanes, R., E. J. Spiteri, F. M. Orr Jr., and M. J. Blunt, 2006, “Impact of relative permeability hysteresis on geological CO2 storage”, Water Resources Research, Vol. 42, W12418.
    ﹝48﹞ Kaldi, J. G., 2011, Carbon Capture and Storage (A Present Lecture of CO2CRC), AOGS 2011, Taipei, Taiwan.
    ﹝49﹞ Land, C. S., 1968, “Calculation of imbibition relative permeability for two- and three-phase flow from rock properties”, Society of Petroleum Engineers Journal, Vol. 8(2), p.149-156.
    ﹝50﹞ Lasaga, A. C., J. M. Soler, J. Ganor, T. E. Burch, and K. L. Nagy, 1994, “Chemical weathering rate laws and global geochemical cycles”, Geochimica et Cosmochimica Acta, Vol. 58(10), p.2361-2386.
    ﹝51﹞ Lichtner, P. C., 1988, “The quasi-stationary state approximation to coupled mass transport and fluid-rock interaction in a porous medium”, Geochimica et Cosmochimica Acta, Vol. 52, p.143-165.
    ﹝52﹞ Lin, A. T., A. B. Watts, 2002, “Origin of the West Taiwan Basin by orogenic loading andflexure of a rifted continental margin”, Journal of Geophysical Research, Vol. 107(B9), ETG 2-1–ETG 2-19.
    ﹝53﹞ Lin, A. T., A. B. Watts, S. P. Hesselbo, 2003, “Cenozoic stratigraphy and subsidence his-tory of the South China Sea Margin in the Taiwan region”, Basin Research Vol. 15, p.453-478.
    ﹝54﹞ Lin, C.-W., Chang, H.-C., Lu, S.-T., Shih, T.-S., Shih, W.-J., 2000, Active Fault Mapof Taiwan, 2nd ed. Central Geological Survey Special Publication, No. 13, pp.122.
    ﹝55﹞ MacMinn, C. W., M. L. Szulczewski and R. Juanes, 2010, “CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow”, Journal of Fluid Mechanics, Vol. 662, p.329-351.
    ﹝56﹞ MacMinn, C. W., M. L. Szulczewski and R. Juanes, 2011, “CO2 migration in saline aquifers. Part 2. Capillary and solubility trapping”, Journal of Fluid Mechanics, Vol. 688, p.321-351.
    ﹝57﹞ Marini, L., 2006, Geological Sequestration of Carbon Dioxide, Volume 11: Thermodynamics, Kinetics, and Reaction Path Modeling, Elsevier Science, pp.470.
    ﹝58﹞ Mayer, K. U., E. O. Frind and D. W. Blowes, 2002, “Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions”, Water Resources Research, Vol. 38(9), WR0862.
    ﹝59﹞ McDonald, M.G., Harbaugh, A.W., 1988. A Modular Three-Dimensional Finite Differ-ence Ground-Water Flow Model, Techniques of Water-Resources Investigations 06-A1, U. S. Geological Survey, .pp.576.
    ﹝60﹞ Michael, K., A. Golab, V. Shulakova, J. Ennis-King, G. Allinson, S. Sharmaa, T. Aiken, 2010, Geological storage of CO2 in saline aquifers—A review of the experience from existing storage operations, International Journal of Greenhouse Gas Control, Vol. 4, p.659-667.
    ﹝61﹞ Mortenson, M. E., 2006, Geometric Modeling, 3rd ed., Industrial Press, pp.452.
    ﹝62﹞ Morton, G. M., 1966, A omputer Oriented Geodetic Data Base and A New Technique in File Sequencing, Technical Report, Ottawa, Canada: IBM Ltd.
    ﹝63﹞ Nordbotten, J. M., M. A. Celia, S. Bachu, 2004, “Analytical solutions for leakage rates through abandoned wells”, Water Resources Research, Vol. 40, W04204.
    ﹝64﹞ O’Rourke, J., 1998, Computational Geometry in C, 2nd ed., Cambridge University Press, pp.392.
    ﹝65﹞ Palandri, J. L. and Y. K. Kharaka, 2004, A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling, US Geological Survey Open File Report 2004-1068.
    ﹝66﹞ Parkhurst, D. L. and C. A. J. Appelo, 1999, User’s guide to PHREEQC (version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey Water-Resources Investigations Report 99-4259.
    ﹝67﹞ Pau, G. S.H., J. B. Bell, K. Pruess, A. S. Almgren, M. J. Lijewski, K. Zhang, 2010, “High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers”, Advances in Water Resources, Vol. 33, p.443-455.
    ﹝68﹞ Peng, D. Y., and D. B. Robinson, 1976, “A New Two-Constant Equation of State”, Industrial and Engineering Chemistry: Fundamentals, Vol. 15, p.59-64.
    ﹝69﹞ Perkins, E. H., W. D. Gunter, 1995. A users manual for PATHARC.94: a reaction path-mass transfer program, Alberta Research Council Report ENVTR 95-11, Canada.
    ﹝70﹞ Pinder, G. F., and M. A. Celia, 2006, Subsurface Hydrology, Wiley.
    ﹝71﹞ Pruess, K., C. Oldenburg, and G. Moridis, 1999, TOUGH2 User’s Guide, Version 2.0,Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, LBNL-43134.
    ﹝72﹞ Pruess, K., J. García, 2002, “Multiphase flow dynamics during CO2 disposal into saline aquifers”, Environmental Geology, Vol. 42, p.282-295.
    ﹝73﹞ Pruess, K., 2005, ECO2N: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2,Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, LBNL-57592.
    ﹝74﹞ Pruess, K., and N. Müller, 2009, “Formation dry-out from CO2 injection into saline aquifers: 1. Effects of solids precipitation and their mitigation”, Water Resources Research, Vol. 45, W03402.
    ﹝75﹞ Pruess, K., 2009, “Formation dry-out from CO2 injection into saline aquifers: 2. Analytical model for salt precipitation”, Water Resources Research, Vol. 45, W03403.
    ﹝76﹞ Pruess, K., and J. Nordbotten, 2011, “Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock”, Transport in Porous Media, Vol. 90, p.135–151.
    ﹝77﹞ Raiz, A., M. Hesse, H. Tchelepi, and F. M. Orr, Jr, 2006, “Onset of convection in a gravitationally unstable, diffusive boundary layer in porous media”, Journal of Fluid Mechanics, Vol. 548, p.87-111.
    ﹝78﹞ Regnault, O., V. Lagneu, H. Catalette, H. Schneider, 2005, “Etude expérimental de la réactivité du CO2 supercritique vis-à-vis de phases minerals pures”, Implications pour la séquestration géologique de CO2, Comptes Rendus Geosciences, Vol. 337, p.1331-1339.
    ﹝79﹞ Rigaux, P., M. Scholl, and A. Voisard, 2002, Spatial Database with Application to GIS, Morgan Kaufmann, pp.410.
    ﹝80﹞ Slider, H. C., 1976, Practical Petroleum Reservoir Engineering Methods: An Energy Concervation Science, Petroleum Publishing Company, pp.559.
    ﹝81﹞ Spycher, N.F., M.H. Reed, 1988, “Fugacity coefficients of H2, CO2, CH4, H2O and of H2O-CO2-CH4 mixtures: a virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling”, Geochimical Cosmochimica Acta, Vol. 52, p.739-749.
    ﹝82﹞ Steefel, C. I. and A. C. Lasaga, 1994, “A Coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems”, American Journal of Science, Vol. 294, p.529-592.
    ﹝83﹞ Steefel, C. I. and K. T. B. MacQuarrie, 1996, Approaches to modeling reactive transport in porous media. In Reactive Transport in Porous Media (P. C. Lichtner, C. I. Steefel, and E. H. Oelkers, eds.), Rev. Mineral. 34, 83-125.
    ﹝84﹞ Sung, R.-T., M.-H. Li, J.-J. Dong, A. T.-S. Lin, S.-K. Hsu, C.-Y. Wang, and C.-N. Yang, 2014, “Numerical assessment of CO2 geological sequestration in sloping and layered heterogeneous formations: A case study from Taiwan”, International Journal of Greenhouse Gas Control, Vol. 20, p.168-179.
    ﹝85﹞ Taiwan Power Company, 2008, Taiwan Power Company Sustainability Report 2007, pp.50.
    ﹝86﹞ Taiwan Power Company, 2009, Taiwan Power Company Sustainability Report 2008, pp.88.
    ﹝87﹞ Taiwan Power Company, 2010, Taiwan Power Company Sustainability Report 2009, pp.80.
    ﹝88﹞ Taiwan Power Company, 2011, Taiwan Power Company Sustainability Report 2010, pp. 81.
    ﹝89﹞ Taiwan Power Company, 2012, Taiwan Power Company Sustainability Report 2011, pp.96.
    ﹝90﹞ Taiwan Power Company, 2013, Taiwan Power Company Sustainability Report 2012, pp.104.
    ﹝91﹞ Taron, J., D. Elsworth, K.-B. Min, 2009, “Numerical simulation of thermal-hydrologic- mechanical-chemical processes in deformable, fractured porous media”, International Journal of Rock Mechanics & Mining Sciences, Vol.46, p.842-854.
    ﹝92﹞ van Genuchten, M. TH., 1980, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils”, Soil Science Society of America Journal, Vol. 44, p. 892-898.
    ﹝93﹞ Verma, A., K. Pruess, 1988, “Thermohydrologic conditions and silica redistributionnear high-level nuclear wastes emplaced in saturated geological formations”, Journal of Geophysics Research, Vol. 93(B2), p.1159-1173.
    ﹝94﹞ Walter, A. L., E. O. Frind, D. W. Blowes, C. J. Ptacek, and J. W. Molson, 1994, “Modelingo f multicomponentr eactivet ransporti n groundwater 1. Model development and evaluation”, Water Resources Research, Vol. 30(11), p.3137-314.
    ﹝95﹞ Walter, A. L., 1995, “Multiphase non-isothermal transport of systems of reacting chemicals”, Water Resources Research, Vol. 31(7), p.1761-1772.
    ﹝96﹞ Watt, A., 2000, 3D Computer Graphics, 3rd ed., Addison Wesley, pp.624.
    ﹝97﹞ White, S. P., R. G. Allis, J. Moore, T. Chidsey, C. Morgan, W. Gwynn and M. Adams, 2005, “Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA”, Chemical Geology, Vol. 217, p.387-405.
    ﹝98﹞ Xu, T., J. A. Apps, and K. Pruess, 2004, “Numerical simulation of CO2 disposal by mineral trapping in deep aquifers”, Applied Geochemistry, Vol. 19, p.917-936.
    ﹝99﹞ Xu, T., J. A. Apps, and K. Pruess, 2005, “Mineral sequestration of carbon dioxide in a sandstone–shale system”, Chemical Geology, Vol. 217, p.295-318.
    ﹝100﹞ Xu, T., E. Sonnenthal, N. Spycher, and K. Pruess, 2006, TOUGHREACT User’s Guide: A Simulation Program for Non-isothermal Multiple Reactive Geochemical Transport in Variably Saturated Geologic Media, Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, LBNL-55460.
    ﹝101﹞ Xu, T., J. A. Apps, K. Pruess, H. Yamamoto, 2007, “Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation”, Chemical Geology, Vol. 242, p.319-346.
    ﹝102﹞ Xu, T., N. Spycher, E. Sonnenthal, G. Zhang, L. Zheng, and K. Pruess, 2011, “TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions”, Computers & Geosciences, Vol. 37, p.763-774.
    ﹝103﹞ Yamamoto, H., K. Zhang, K. Karasaki, A. Marui, H. Uehara, N. Nishikawa, 2009, “Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow”, International Journal of Greenhouse Gas Control, Vol. 3, p.586-599.
    ﹝104﹞ Yeh, G. T. and V. S. Tripathi, 1989, “A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components”, Water Resources Research, Vol. 25 (1), p.93-108.
    ﹝105﹞ Zhang, F., G. T. Yeh and J. C. Parker (ed.), 2012, Groundwater Reactive Transport Models, Bentham Science Publishers, pp.254.

    QR CODE
    :::