跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林彥智
Yen-Chih Lin
論文名稱: 利用線性零組件組合金氧半場效電晶體之模型及其電路應用
Analysis and Simulation of Nonlinear MOSFET Circuits by Linear Components
指導教授: 蔡曜聰
Yao-Tsung Tasi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 52
中文關鍵詞: 零組件線性非線性牛頓拉夫森
外文關鍵詞: linear circuit, simulation
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文非線性零組件以線性零組件來組成其模擬架構,基本線性零組件包含:電壓源、電阻、電容、電感、電壓控制電流源等,在程式中我們將非線性元件的內部參數及元件架構利用新的表示法顯示在主程式上,藉此可以方便我們學習及調整。我們利用此方法成功完成二極體電路、場效電晶體元件及其電路應用的特性分析,並將分析結果和PSPICE 做比較,來驗證我們新開發的表示法是否正常操作。


    In this thesis, we develop nonlinear circuit simulations based on the linear components. The basic linear components include voltage source, resistor, capacitor, and voltage-control current source, etc. In the program, we will use explicit representation structure to display the implicit parameters of the nonlinear elements and linear components in the main program. Using this explicit representation we can facilitate learning and adjust the within parameters. Using this method, we successfully completed the diode circuit, MOSFET, and Oscillator circuits. We will compare the results by using new
    representation with PSPICE to verify our explicit representation is in working or not.

    中文摘要.............................................. i ABSTRACT............................................. ii 第一章 簡介............................................1 第二章 線性零組件操作原理與牛頓-拉夫森法之關係.........2 2.1 利用線性零組件組成任意非線性零組件之優點...........2 2.2 線性電路取代非線性電路之原理介紹...................3 2.3 利用線性零組件完成二極體元件之開關電路............10 第三章 外顯式金氧半場效電晶體開發與分析...............13 3.1 外顯式N 通道場效電晶體開發........................13 3.2 外顯式P 通道場效電晶體開發........................21 3.3 外顯式場效電晶體電性分析與PSPICE 比較.............25 第四章 外顯式金氧半場效電晶體之電路應用...............30 4.1 外顯式金氧半場效電晶體於考畢茲震盪器之應用........30 4.2 外顯式金氧半場效電晶體於環式振盪器之應用..........34 4.3 外顯式金氧半場效電晶體之應用電路與PSPICE 比較.....38 第五章 結論....................,,,,,,,,,,,,...........42 參考文獻..............................................44

    [1] S.S.Kuo. “Computer application of numerical method,” Additions-Wesley Pub. Co. 1972
    [2] A.B. Israel. “Newton’s method with modified functions,” Contemporary Math., 204, (1997), 39–50.
    [3] R.L. Boylestad and L. Nashelsky. “Electronic Devices and CircuitTheory,” Chapter 2, Prentice Hall, 9 edition, 2005
    [4] J.J.Dazzo and C.H.Houpis. “Linear Control System Analysis and Design, Conventional and Modern” New York:McGraw-Hill, 1975.
    [5] H.C. CASEY, JR. “DEVICE FOR INTEGRATED CIRCUITS Silicon and III-V Compound Semiconductor” Chapter 4, pp. 165,1998.
    [6] N. Shur. “Introduction to Electronic Device,” Chapter 3,John Wiley & Sons Inc., 1996.
    [7] H.C. CASEY, JR. “DEVICE FOR INTEGRATED CIRCUITS Silicon and III-V Compound Semiconductor,” Chapter 8, pp. 344,1998.
    [8] H.C. CASEY, JR. “DEVICE FOR INTEGRATED CIRCUITS Silicon and III-V Compound Semiconductor,” Chapter 7, pp. 297,1998.
    [9] D.M. Bressoud. “Appendix to Radical Approach to Real Analysis 2nd edition,” pp. 282,2006.
    [10] A. S. Sedra and Kenneth C. Smith. “Microelectronic Circuit,” Oxford University Press, Inc., 1998.
    [11] S.M. Kang and Y. Leblebici. “CMOS Digital Integrated Circuits: Analysis and Design,” The McGraw-Hill Companies, Inc,Chapter 6, pp. 215,1996
    [12] B. Razavi. “Design of Analog CMOS Integrate Crcuits,” McGraw-Hill Company , Inc., 2001.

    QR CODE
    :::