跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蕭培均
Pei Jun Hsiao
論文名稱: 債券投資組合風險值計算之探討
指導教授: 黃泓人
Hung Ren Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 49
中文關鍵詞: 卡爾曼濾波器二因子利率模型利率風險債券投資組合風險值
外文關鍵詞: Kalman Filter, Canonical-form Vasicek Model, Interest rate risk, Bond portfolio, VaR
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 交易債券會面臨許多風險,利率變動的風險是一個主要來源之一,而由於影響利率變動的因素有許多,使得預測利率並不是一件容易的事。因此,如何控管承擔的利率風險是一件重要的事。
    這份研究中採用了風險值(Value-at-Risk)做為控管可能承擔的最大損失的一個基本工具。而要求出風險值的方法有許多種,基本上可分為三類:變異數-共變數法、歷史模擬法、及蒙地卡羅模擬法,而本文便是將蒙地卡羅模擬法做進一步的延伸。
    在本文中利用Canonical-form two factor Vasicek Model配適利率期限結構,並以Kalman Filter來進行利率模型的參數估計,再透過模擬殖利率變動的方式,進而做為找債券投資組合分配的方法,並結合了歷史模擬法的概念與蒙地卡羅模擬法計算公債投資組合的風險值。方法便是利用變動利率模型中的參數做為找出債券投資組合折現價格分配的方式,最後再計算風險值。


    Trading bonds will face lots of risks. The main resource of risk is the interest rate risk. Because there are different kinds of factors to affect the interest rate risk, it is not easy to estimate the future trend of interest rate, then controlling the risk we take is very important.
    In this research, we use Value-at-Risk as a basic tool to help us to control the possible maximum loss we will take in bond portfolio. And there are three basic ways to calculate Value-at-risk : Variance-Covariance method、Historical simulation method、and Monte Carlo method, we try to extend Monte Carlo method in this paper.
    In this thesis, we try to fit the Term-Structure of interest rate with Canonical-form two factor Vasicek Model, and we use Kalman Filter to estimate parameters of this interest rate Model. Then, through simulating the changing of yield rate, we can find the distribution of discounted bond price, and we can use the distribution to calculate VaR.

    中文摘要 i Abstract ii 目錄 i 表目錄 ii 圖目錄 ii 第一章 緒論 1 第一節 風險值簡介 1 第二節 債券投資組合的風險及風險值計算方式簡介 2 第三節 背景與動機 4 第四節 研究發現與貢獻 4 第五節 研究架構 5 第二章 文獻回顧 6 第一節Value at Risk與債券投資組合 6 第二節Kalman Filter與利率模型參數估計 8 第三章 研究方法 9 第一節 資料來源說明 9 第二節 實驗方法簡介 10 第三節 利率模型的建構 10 第四節Kalman Filter參數估計方法說明 14 第五節 應用Kalman Filter於利率模型的估計步驟說明 19 第六節 計算風險值方法說明 20 第四章 實驗結果說明 23 第一節 利率模型配適結果說明 23 第二節 模擬公債投資組合風險值計算結果 24 第五章 結論與建議 30 附錄一 32 附錄二 36 參考文獻 40 表 1 2011/01/03-2015/06/25日殖利率曲線資料下估計所得參數 24 表 2 2011/01/03-2015/06/25每年日殖利率曲線資料下估計所得 24 表 3模擬公債投資組合資料 24 表 4各年期債券投資組合一天期風險值比較(信賴水準99%) 26 表 5固定票面利率或債券期間風險值比較(期間一天,信賴水準99%) 27 圖 1模擬殖利率曲線與實際2015/06/25殖利率曲線資料比較 23 圖 2模擬公債投資組合折現期望值分佈(1250組利率模型參數) 25 圖 3固定債券期間或票面利率模擬投資組合折現期望值分佈(1250組利率模型參數) 27

    英文部份
    1. Beder, T. S. (1995). VAR: Seductive but dangerous. Financial Analysts Journal, 51(5), 12-24.
    2. Bolder, D. J. (2001). Affine term-structure Models: Theory and implementation. Available at SSRN 1082826.
    3. Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385-407.
    4. Chen, R. R., & Scott, L. (2003). Multi-factor Cox-Ingersoll-Ross Models of the term structure: Estimates and tests from a Kalman Filter Model. The Journal of Real Estate Finance and Economics, 27(2), 143-172.
    5. Chatterjee, S. (2005). Application of the Kalman Filter for estimating continuous time term structure Models: the case of UK and Germany.
    6. Darbha, G. (2001). Value-at-Risk for Fixed Income portfolios–A comparison of alternative Models. National Stock Exchange, Mumbai, India.
    7. Hull, J., & White, A. (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. Journal of Risk, 1(1), 5-19.
    8. Hull, J. (2009). Options, Futures and Other Derivatives. Pearson Education.
    9. Huynh, H. T., & Soumare, I. (2011). Stochastic simulation and applications in finance with MATLAB programs (Vol. 633). John Wiley & Sons.
    10. Jorion, P. (2007). Value at risk: the new benchmark for managing financial risk (Vol. 3). New York: McGraw-Hill.
    11. Kreinin, A., Merkoulovitch, L., Rosen, D., & Zerbs, M. (1998). Principal component analysis in quasi monte carlo simulation. Algo Research Quarterly, 1(2), 21-30
    12. Kladıvko, K. (2007). Maximum likelihood estimation of the Cox-Ingersoll-Ross process: the Matlab implementation. Technical Computing Prague.
    13. Mastro, M. (2013). Financial Derivative and Energy Market Valuation: Theory and Implementation in MATLAB. John Wiley & Sons.
    14. Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of business, 473-489.
    15. Richardson, M. P., Boudoukh, J., & Whitelaw, R. (1997). The Best of Both Worlds: A Hybrid Approach to Calculating Value at Risk. Available at SSRN 51420.
    16. Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time Models (Vol. 11). Springer Science & Business Media.
    17. Smith, D. J. (2008). A primer on bond portfolio value at risk. Working Paper.
    18. Su, E., & Knowles, T. W. (2010). Measuring Bond Portfolio Value at Risk and Expected Shortfall in US Treasury Market. Asia Pacific Management Review, 15(4), 477-501.
    19. Tsay, R. S. (2005). Analysis of financial time series (Vol. 543). John Wiley & Sons.
    20. Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of financial economics, 5(2), 177-188.
    21. Vlaar, P. J. (2000). Value at risk Models for Dutch bond portfolios. Journal of banking & finance, 24(7), 1131-1154.
    22. Van Son Lai, Y. S., & Soumaré, I. (2005) A Simple Method for Computing Value at Risk using PCA and QMC. Journal of Financial Decision Making, Volume 1, Number 2,
    23. Zhao, Q. J. Y. (2013). Risk Analysis for Corporate Bond Portfolios (Doctoral dissertation, WORCESTER POLYTECHNIC INSTITUTE).

    中文部份
    24. 李進生、謝文良、林允永、蔣炤坪、陳達新、盧陽正 (2001) 風險管理: 風險值 (VaR) 理論與應用. 新竹市: 清蔚科技
    25. 李曉菁、林朝陽,(2006),蒙地卡羅法利率模擬路徑之比較∼以GBM與Vasicek Model為例,貨幣觀測與信用評等,第60期,85-93頁
    26. 凱文•登(Kevin Dowd)、林劭杰,(2008),市場風險-現代風險衡量方法,財團法人金融研訓社
    27. 陳松男 (2010) 利率金融工程學:理論及實務應用
    28. 薛立言、劉亞秋,(2010),債券市場概論,華泰文化,1月二版

    QR CODE
    :::