跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王家翔
Chia-Hsiang Wang
論文名稱: 以自相似算法進行衛星影像融合和水線判釋
Self-similarity algorithm for satellite image fusion and waterline interpretation
指導教授: 曾國欣
Kuo-Hsin Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 69
中文關鍵詞: 水線凸自相似性正規化影像融合衛星遙測
外文關鍵詞: waterline, convex self-similarity regularization, panchromatic sharpening, remote sensing
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著多重感測器應用在遙感探測、電腦視覺等諸多領域的普及,多重感測器產品的融合影像儼然成為新興的話題。主要原因之一是各種感測器可以在同位置提供不同的時空影像。因此,本研究目標為合成來自不同感測器的全色銳化影像,並研究融合影像在水線檢測中的表現。該工作流程以具有低空間解析度但高時間解析度的Sentinel-2衛星影像為例,通過將該數據與全色態影像提供高空間解析度的SPOT-6 衛星影像進行融合。首先,我們將SPOT-6的全色態影像與Sentinel-2的多光譜 (NIR-B-G) 影像進行融合,使用自相似正規化全色銳化 (SimiRegPS)方法融合桃園地區的衛星影像,此自相似性已在自然影像以及各種成像逆問題中得到廣泛的驗證。然後,計算常態化差異水體指數全色銳化 (NDWIP) 以識別水像素。我們使用桃園市政府水務局提供的UAV正射影像驗證了場景一和場景二的8口埤塘,驗證包括旱季(場景一)和雨季(場景二)等兩種場景設定。 在場景一中,融合影像中水線的平均精度在2.99 m和8.05 m 之間。在場景二中,融合影像中水線的平均精度在2.68 m和7.52 m之間。在場景一中,融合影像中水域的平均準確率為85%,而原始影像為 73%。在場景二中,融合影像中水域的平均準確率為84%,而原始影像為72%。綜上所述,本研究顯示通過將 Sentinel-2 與有限的 SPOT-6影像相結合,通過SimiRegPS方法獲得更準確的水線,可以有效地提取水文參數。


    With the popularization of multi-sensor applications in remote sensing, computer vision, and many other fields, the fusion of multi-sensor products has become an emerging topic in the community. One of main reasons is the variety of sensors can provide different spatiotemporal images in the same location. Hence, this study aims to compose a panchromatic-sharpened image from heterogenous sensors, and to investigate the performance of the fused image in waterline detection. The workflow is exemplified by Sentinel-2 that has a lower spatial but high temporal resolution, and to merge the data with SPOT-6 that provide much higher spatial resolution in its panchromatic band. We first fuse the panchromatic images of SPOT-6 with the multispectral (NIR-B-G) images of Sentinel-2, by using the Self-similarity Regularized Pansharpening (SimiRegPS) method to fuse the images covering Taoyuan, Taiwan. The self-similarity employed in our design has been extensively examined in natural images as well as in various imaging inverse problems. Following that, the Normalized Difference Water Index Pansharpened (NDWIP) is calculated to identify water pixels. We validate 8 ponds as compared with in situ data from Taoyuan Water Resources Department. The validation includes two scenarios: dry season (scenario 1) and wet season (scenario 2). In scenario 1, the averaged accuracy of waterline in the fused image is between 2.99 m and 8.05 m. In scenario 2, the averaged accuracy of waterline in the fused image is between 2.68 m and 7.52 m. Also, the averaged accuracy of water area in the fused image is 85% and 84%, in contrast to 73% and 72% of the original image in scenario 1 and 2, respectively. To conclude, this research has shown the possibility to effectively extract hydrologic parameters by combining Sentinel-2 with limited SPOT-6 images to obtain the more accurate waterline through SimiRegPS method.

    Chapter 1 Introduction 1 1.1. Background and Motivation 1 1.2. Pansharpening Method 2 1.3. Advantage of SimiRegPS 3 1.4. Architecture 4 Chapter 2 Related Works 5 2.1. Method of Image Fusion 5 2.2. Method of Waterline Extraction 6 Chapter 3 Study Area 8 Chapter 4 Data and Methodology 9 4.1. Pre-processing of SPOT-6 10 4.2. Pre-processing of Sentinel-2 11 4.3. Merging Two Data Products 13 4.4. Procedure of Pansharpening 15 4.5. Spectral Index for Water Detection 19 4.6. Canny Edge detection 20 4.7. Normalized Different Water Index Pansharpened (NDWIP) 21 Chapter 5 Experimental Results 25 5.1. Data Generation 25 5.2. Validation of the Developed Method 32 Chapter 6 Discussion 48 Chapter 7 Conclusions 52 Reference 54

    Afonso, M.V., Bioucas Dias, J. M., & Figueiredo, M. A. T. (2011). An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing, 20(3), 681–695. https://doi.org/10.1109/TIP.2010.2076294
    Aiazzi, B., Alparone, L., Baronti, S., & Lotti, F. (1997). Lossless image compression by quantization feedback in a content-driven enhanced Laplacian pyramid. IEEE Transactions on Image Processing, 6(6), 831–843.
    Ali, M., & Clausi, D. (2001). Using the Canny edge detector for feature extraction and enhancement of remote sensing images. International Geoscience and Remote Sensing Symposium (IGARSS), 5(C), 2298–2300. https://doi.org/10.1109/igarss.2001.977981
    Alparone, L., Baronti, S., Aiazzi, B., & Garzelli, A. (2016). Spatial methods for multispectral pansharpening: Multiresolution analysis demystified. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2563–2576.
    Byun, Y., Han, Y., & Chae, T. (2015). Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images. Remote Sensing, 7(8), 10347–10363.
    Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851
    Chavez, P. S., & Kwarteng, A. Y. (1989). Extracting spectral contrast in Landsat Thematic Mapper image data using selective principal component analysis. Photogrammetric Engineering & Remote Sensing, 55(3), 339–348.
    Chen, C. H. (2012). Twenty-Five Years of Pansharpening: A Critical Review and New Developments. In Signal and Image Processing for Remote Sensing. https://doi.org/10.1201/b11656-31
    Chi, C. Y., Li, W. C., & Lin, C. H. (2017). Convex Optimization for Signal Processing and Communications. In Convex Optimization for Signal Processing and Communications. CRC press. https://doi.org/10.1201/9781315366920
    Dong, L., Yang, Q., Wu, H., Xiao, H., & Xu, M. (2015). High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform. Neurocomputing, 159, 268–274.
    Drought and water shortage crisis in Taiwan in 2021. (2021). https://zh.m.wikipedia.org/zh-tw/2021年臺灣旱災缺水危機
    Gilvear, D., Tyler, A., & Davids, C. (2004). Detection of estuarine and tidal river hydromorphology using hyper-spectral and LiDAR data: Forth estuary, Scotland. Estuarine, Coastal and Shelf Science, 61(3), 379–392.
    Hsu, R., & Chang, K. C. (2015). The use of innovative software Pix4Dmapper to optimize the process of generating spatial data from UAV’s aerial images. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 27(3), 241–246.
    Laben, C. ., & Brower, B. . (2000). Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. In United States Patent 6.
    Lebrun, M., Colom, M., Buades, A., & Morel, J. M. (2012). Secrets of image denoising cuisine. Acta Numerica, 21, 475–576. https://doi.org/10.1017/S0962492912000062
    Lin, C. H., & Bioucas Dias, J. M. (2020). An Explicit and Scene-Adapted Definition of Convex Self-Similarity Prior with Application to Unsupervised Sentinel-2 Super-Resolution. IEEE Transactions on Geoscience and Remote Sensing, 58(5), 3352–3365. https://doi.org/10.1109/TGRS.2019.2953808
    Lin, C. H., Ma, F., Chi, C. Y., & Hsieh, C. H. (2018). A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 1652–1667. https://doi.org/10.1109/TGRS.2017.2766080
    Lin, C. H., Ma, W. K., Li, W. C., Chi, C. Y., & Ambikapathi, A. M. (2015). Identifiability of the Simplex Volume Minimization Criterion for Blind Hyperspectral Unmixing: The No-Pure-Pixel Case. IEEE Transactions on Geoscience and Remote Sensing, 53(10), 5530–5546. https://doi.org/10.1109/TGRS.2015.2424719
    McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
    McFeeters, S. K. (2013). Using the normalized difference water index (ndwi) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544
    Pai, C. C., Liu, Y. C., Hsiao, Y. S., Lien, H. P., & Lin, P. H. (2015). Analysis of accuracy for UAV-derived topography from a GoPro camera. Journal of Chinese Soil and Water Conservation, 46(3), 142–149.
    Parage, V., & Faget, N. (2015). New sensors benchmark report on SPOT7. In Scientific and Technical Research Series. https://doi.org/10.2788/17914
    Paris, C., Bioucas Dias, J., & Bruzzone, L. (2019). A Novel Sharpening Approach for Superresolving Multiresolution Optical Images. IEEE Transactions on Geoscience and Remote Sensing, 57(3), 1545–1546. https://doi.org/10.1109/TGRS.2018.2867284
    Patel. (2019). Color image denoising via sparse 3D. 15(2), 9–25.
    Ryu, J. H., Won, J. S., & Min, K. D. (2002). Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sensing of Environment, 83(3), 442–456.
    Sentinel, E. S. A. (2 C.E.). User Handbook. ESA Standard Document, 64.
    Stephenson, N. M. (2016). High Resolution Habitat Suitability Modeling for a Narrow-Range Endemic Alpine Hawaiian Species a Thesis Submitted To the Graduate Division of the University of Hawai ‘ I At Hilo in Partial Fulfillment of the Requirements for the Degree of Master of Scien.
    the project of remote sensing to monitoring analysis and management of Water Resources Key Areas. (2020). https://scholars.ncu.edu.tw/en/projects/109年度遙測科技應用於水資源重點區域監測分析及管理委託專業服務案-2
    Tu, T. M., Huang, P. S., Hung, C. L., & Chang, C. P. (2004). A fast intensity-hue-saturation fusion technique with spectral adjustment for IKONOS imagery. IEEE Geoscience and Remote Sensing Letters, 1(4), 309–312. https://doi.org/10.1109/LGRS.2004.834804
    Venkatakrishnan, S.V., Bouman, C. A., & Wohlberg, B. (2013). Plug-and-Play priors for model based reconstruction. 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings, 945–948. https://doi.org/10.1109/GlobalSIP.2013.6737048
    Wang, C. H., Lin, C. H., Dias, J. M. B., Zheng, W. C., & Tseng, K. H. (2019). Panchromatic sharpening of multispectral satellite imagery via an explicitly defined convex self-similarity regularization. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 3129–3132.
    Wetland Conservation Act. (2022). Taiwans’s Wetland Remsar Citzen. https://wetland-tw.tcd.gov.tw/en/Aboutwetlands.php
    Yen, C. H., Chen, K. T., Lee, S. P., Liu, C. J., Wu, C. Y., & Chan, H. C. (2015). A feasibility study on unmanned aerial vehicle for river stability. Journal of Soil and Water Conservation, 47(3), 1407-1416 (Chinese).
    Zhao, Y., Yang, J., & Chan, J. C. W. (2014). Hyperspectral imagery super-resolution by spatial-spectral joint nonlocal similarity. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(6), 2671–2679. https://doi.org/10.1109/JSTARS.2013.2292824

    QR CODE
    :::