| 研究生: |
林尚緯 Shang-Wei Lin |
|---|---|
| 論文名稱: |
基於FPGA的Micro-LED實時色彩校正控制系統 FPGA-Based Control System for Real-Time Driving of UHD Micro-LED Display with Color Calibration |
| 指導教授: |
蔡宗漢
Tsung-Han Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | FPGA 、實時控制 、Micro-LED 、非均勻性校正 、UHD影片 |
| 外文關鍵詞: | FPGA, real-time control, Micro-LED, non-uniformity compensation, UHD video |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Micro-LED技術是一種新興的顯示技術,具有許多引人注目的優勢。首先,Micro-LED顯示器擁有極高的亮度,這使得它在室內和室外環境中都能提供出色的視覺效果非常適合用於商業廣告牌和戶外大屏幕。其次,Micro-LED顯示器具有極低的功耗。相比傳統的液晶顯示器和有機發光二極管(OLED)顯示器,Micro-LED顯示器在相同亮度水平下消耗的能量更少。這種低功耗有助於延長顯示器的使用壽命,同時降低能源消耗,符合環保和節能的要求。此外,Micro-LED顯示器在色彩性能方面表現出眾。它能夠呈現廣色域,具有更高的色彩飽和度和更準確的色彩再現能力。這意味著Micro-LED顯示器可以更好地呈現真實世界中的色彩,使影像更加生動逼真。對於需要高色彩準確性的應用,如專業圖形設計、影像編輯和醫學影像顯示,Micro-LED顯示器提供了一個理想的解決方案。
然而,要驅動Micro-LED顯示器並實現這些優勢,需要複雜的控制算法和高速數據處理。這就帶來了一些挑戰,如如何實現實時控制、確保色彩準確性和保持系統的穩定性。為了應對這些挑戰,本研究開發了一個基於FPGA的實時控制系統,專為68英寸4K/60Hz的Micro-LED顯示器而設計。
該控制系統具有高性能和精確的控制能力,能夠實現精確的色彩準確度,並支持10位色深以提升色彩再現效果,並且為了戶外大型顯示屏的考量,實現收發端長距離的傳輸。為了確保整個顯示器上的色彩一致性,系統實現了色彩校準技術,使得每個Micro-LED元素都能呈現一致的色彩。
Micro-LED technology is an emerging display technology that offers numerous remarkable advantages. Firstly, Micro-LED displays possess incredibly high brightness, making them suitable for both indoor and outdoor environments and ideal for commercial billboards and outdoor large screens. Secondly, Micro-LED displays have extremely low power consumption compared to traditional LCD displays and organic light-emitting diode (OLED) displays, resulting in extended display lifespan and reduced energy consumption, aligning with environmental sustainability and energy-saving requirements. Additionally, Micro-LED displays excel in color performance. They can achieve a wide color gamut, higher color saturation, and more accurate color reproduction, allowing for vivid and lifelike image rendering. For applications demanding high color accuracy, such as professional graphic design, image editing, and medical image displays, Micro-LED displays offer an ideal solution.
However, driving Micro-LED displays and harnessing these advantages require complex control algorithms and high-speed data processing. This poses challenges in achieving real-time control, ensuring color accuracy, and maintaining system stability. To address these challenges, this study presents the development of a real-time FPGA-based control system specifically designed for a 68-inch 4K/60Hz Micro-LED display.
The proposed control system exhibits high performance and precise control capabilities, enabling accurate color accuracy and supporting 10-bit color depth for enhanced color reproduction. Additionally, the system incorporates long-distance transmission capabilities for outdoor large screens. To ensure color consistency across the entire display, the system implements color calibration techniques, ensuring uniform color presentation for each Micro-LED element.
[1] Laaperi, Antti. "OLED lifetime issues from a mobile‐phone‐industry point of view." Journal of the Society for Information Display 16.11 (2008): 1125-1130.
[2] Luo, Zhenyue, and Shin-Tson Wu. "OLED versus LCD: Who wins." Opt. Photonics News 2015 (2015): 19-21.
[3] Huang, Yuge, et al. "Mini-LED, Micro-LED and OLED displays: present status and future perspectives." Light: Science & Applications 9.1 (2020): 105.
[4] Huang, Yuge, et al. "Prospects and challenges of mini‐LED and micro‐LED displays." Journal of the Society for Information Display 27.7 (2019): 387-401.
[5] Chen, Hai-Wei, et al. "Liquid crystal display and organic light-emitting diode display: present status and future perspectives." Light: Science & Applications 7.3 (2018): 17168-17168.
[6] Lin, J. Y., and H. X. Jiang. "Development of microLED." Applied Physics Letters 116.10 (2020): 100502.
[7] Wu, Tingzhu, et al. "Mini-LED and micro-LED: promising candidates for the next generation display technology." Applied Sciences 8.9 (2018): 1557.
[8] Paranjpe, Ajit, et al. "45‐2: invited paper: micro‐LED displays: key manufacturing challenges and solutions." SID Symposium Digest of Technical Papers. Vol. 49. No. 1. 2018.
[9] Magluyan, Bo. "P‐86: Pixel Level Luminance Measurement and OLED Correction." SID Symposium Digest of Technical Papers. Vol. 48. No. 1. 2017.
[10] Knausz, Imre, and Robert J. Bowman. "A low power, scalable, DAC architecture for liquid crystal display drivers." IEEE journal of solid-state circuits 44.9 (2009): 2402-2410.
[11] Pappas, Ilias, Stylianos Siskos, and Charalambos A. Dimitriadis. "Active-matrix liquid crystal displays-operation, electronics and analog circuits design." New Developments in Liquid Crystals (2009): 147-170.
[12] Kim, Jin-Ho, et al. "15‐1: PWM Pixel Circuit with LTPS TFTs for Micro‐LED Displays." SID Symposium Digest of Technical Papers. Vol. 50. No. 1. 2019.
[13] Genoe, Jan, et al. "30.2 Digital PWM-driven AMOLED display on flex reducing static power consumption." 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 2014.
[14] Lin, Yi-Zhen, et al. "Active-matrix micro-LED display driven by metal oxide TFTs using digital PWM method." IEEE Transactions on Electron Devices 68.11 (2021): 5656-5661.
[15] Murakami, D, Soga Y, Imoto D, Watanabe Y,Yamada T: The world’s 1st Complete-4K SoC solution with hybrid memory system. In: 2015 20th Asia and South Pacific Design Automation Conference, pp 684–686.
[16] Jang, S.J., Lee, S.S., Kim, J.W.: VLSI architecture for simultaneous capture and playback of 4K UHD audio and video data from multiple channels. In: IEEE International Conference on Consumer Electronics-Asia. IEEE2016.978,5090–2743 (2016)
[17] hen, Q., Sun, H., Zhang, X., Tao, H., Yang, J.: Zhao Jizhong, Zheng Nanning: Algorithm and VLSI Architecture of Edge-Directed Image Upscaling for 4 K Display System. IEEE Trans. Circuits Syst. Video Technol. 26(9), 1758–1771 (2016)
[18] P. P. Shete, D. M. Sarode and S. K. Bose, "Real-time panorama composition for video surveillance using GPU", 2016 International Conference on Advances in Computing Communications and Informatics (ICACCI), pp. 137-143, 2016.
[19] J. C. T. Hai, O. C. Pun and T. W. Haw, "Accelerating video and image processing design for FPGA using HDL coder and simulink", 2015 IEEE Conference on Sustainable Utilization And Development In Engineering and Technology (CSUDET), pp. 1-5, 2015.
[20] S. Chen, S. Yu, J. Lu, G. Chen and J. He, "Design and FPGA-Based Realization of a Chaotic Secure Video Communication System", IEEE Transactions on Circuits and Systems for Video Technology, vol. PP, no. 99, pp. 1-1.
[21] Guo, Xin, Xinyue Wei, and Yiqing Liu. "An FPGA implementation of multi-channel video processing and 4K real-time display system." 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017.
[22] Yan, Fei, et al. "Design of Video Mosaic System." Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology: Algorithms and Applications, Proceedings of IC3DIT 2019, Volume 2. Springer Singapore, 2020.
[23] Liu, Fuchun, Lei Wang, and Yang Yang. "A UHD MIPI CSI-2 image acquisition system based on FPGA." 2021 40th Chinese Control Conference (CCC). IEEE, 2021.
[24] Kowalczyk, Marcin, Dominika Przewlocka, and Tomasz Kryjak. "Real-time implementation of contextual image processing operations for 4K video stream in Zynq ultrascale+ MPSoC." 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE, 2018.
[25] Baranov, Pavel S., and Leonid I. Ivanov. "High-quality uhd demosaicing on low-cost fpga." 2018 IEEE conference of Russian young researchers in electrical and electronic engineering (EIConRus). IEEE, 2018.
[26] L. Araneda and M. Figueroa, "Real-Time Digital Video Stabilization on an FPGA", 2014 17th Euromicro Conference on Digital System Design, pp. 90-97, 2014.
[27] Goel, Anish, M. Omair Ahmad, and M. N. S. Swamy. "Design of a 2D median filter with a high throughput FPGA implementation." 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2019.
[28] Hore, S., Chakraborty, S., Chatterjee, S., Dey, N.: An Integrated Interactive Technique for Image Segmentation using Stack based Seeded Region Growing and Thresholding. International Journal of Electrical and Computer Engineering 6(6), 2773–2780 (2016)
[29] He, Zhuolun, et al. "FPGA-based real-time super-resolution system for ultra high definition videos." 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2018.
[30] Kusano, Hotaka, et al. "An FPGA-optimized architecture of anti-aliasing based super resolution for real-time HDTV to 4K-and 8K-UHD conversions." 2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig). IEEE, 2016.
[31] Zynq-7000 SoC and 7 Series Devices Memory Interface Solutions v4.2, User Guide (UG586)
[32] Magluyan, Bo. "P‐86: Pixel Level Luminance Measurement and OLED Correction." SID Symposium Digest of Technical Papers. Vol. 48. No. 1. 2017.