跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林泳鋒
Yong-Fong Lin
論文名稱: 應用於人臉表情辨識之強健式主動外觀模型搜尋演算法
A Robust Active Appearance Models Search Algorithm for Facial Expression Recognition
指導教授: 唐之瑋
Chih-Wei Tang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 主動外觀模型搜尋主動外觀模型紋理形狀
外文關鍵詞: active appearance models, texture, shape, AAMs search
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動外觀模型(Active Appearance Models,簡稱AAMs)是一種表示影像中在形狀與紋理都具變異性之非剛體物件的方法,並提供此物件一個模型化(Model-based)的表示方式。它利用一個平均值和一組模式(modes)的線性組合,來表示欲分析的非剛體物件,並且藉由改變模型中模的線性組合之係數(或稱模型參數),可使模型合成出各種變異的非剛體物件。因此,透過AAMs這種表示法,我們便可用模型化的方式,表示人臉的表情。以AAMs進行人臉表情辨識的應用,需要可找到最佳模型參數的搜尋演算法(AAMs search algorithm),使得模型在這組參數下所合成出的表情,能夠近似於影像中的人臉表情。如此,我們便可透過分析模型參數的方式,進行人臉表情辨識。
    本論文提出一個疊代式AAMs參數搜尋演算法,以傳統的AAMs參數搜尋演算法為基礎,將量測模型與測試影像之誤差函數最小化,只採用該方法所搜尋之參數變化量的大小,在參數搜尋的方向上,我們估測每個疊代下誤差函數的梯度,以決定參數的搜尋方向。本論文更進一步提出,將搜尋到之參數做一個微小的擾動,以防止搜尋的結果掉入誤差函數之局部最小值中。
    實驗結果顯示,本論文所提出之強健式主動外觀模型搜尋演算法,相較於傳統的尋演算法,平均降低人臉表情形狀的位置搜尋誤差36.41%。在人臉表情紋理的搜尋上,則平均減少30.82%的灰階值誤差。


    Active Appearance Models (AAMs) is an image representation method for non-rigid visual object with both shape and texture variations. It is a model-based representation method, and it uses a mean vector and a linear combinations of a set of variation modes to represent a non-rigid object. By adjusting the coefficients of the linear combinations of the variation modes(model parameters), we can synthesize any non-rigid objects. With this, we can express facial expressions using a model-based approach. For the facial expression recognition, an AAMs search algorithm is required to find the optimum model parameters such that the synthesized expression is similar to the facial expression in images. In this paper, we propose a novel iterative AAMs search algorithm. It minimizes the error which measures the difference between a model and a test image. We only adopt the magnitude of the predicted change of the parameters from the traditional search algorithm. However we decide the direction of the change of the parameters by estimating the gradient of the error function at each iteration. Moreover we prevent the local minimum search of the error function at each iteration by disturbing the searched parameters.
    Our experiments show that the proposed robust AAMs search algorithm reduced 36.41% location error of shape and 30.82% intensity error of texture of facial expressions related to the AAMs search algorithm.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 1.3 研究方法 2 1.4 論文架構 2 第二章 臉部表情辨識簡介 3 2.1 臉部表情辨識 3 2.2 臉部表情辨識系統分類 4 2.2.1 以影像為基礎之表情辨識系統 5 2.2.2 以運動為基礎之表情辨識系統 7 2.2.3 以模型為基礎之表情辨識系統 8 2.3 總結 10 第三章主動外觀模型 11 3.1 主動外觀模型應用 11 3.2 主成份分析(PRINCIPLE COMPONENT ANALYSIS) 11 3.3 應用於臉部表情辨識系統之主動外觀模型 14 3.3.1 基於主成份分析之臉部表情形狀模型 14 3.3.1.1 臉部表情形狀捕捉 14 3.3.1.2 建立臉部表情形狀模型 18 3.3.1.3 臉部表情形狀之重建 20 3.3.2 臉部表情紋理模型 22 3.3.2.1 臉部表情紋理捕捉 22 3.3.2.2 建立臉部表情紋理模型 24 3.3.2.3 臉部表情紋理重建 25 3.3.3 合併式主動外觀模型 27 3.3.3.1 建立合併式主動外觀模型 28 3.3.3.2 臉部表情外觀重建 30 3.4 以主動外觀模型為基礎之臉部表情辨識系統 31 3.5 總結 33 第四章 強健式主動外觀模型搜尋演算法 34 4.1 主動外觀模型搜尋演算法 34 4.1.1 影像誤差模型化 35 4.1.2 疊代式搜尋演算法 38 4.2 本論文提出之強健式主動外觀模型搜尋演算法 40 4.2.1 多重姿勢搜尋機制 40 4.2.2 參數搜尋方向估測 41 4.2.3 局部最小值之預防 43 4.2.4 強健式主動外觀模型搜尋演算法之搜尋流程 44 4.3 總結 45 第五章 實驗結果 46 5.1 實驗相關設定 46 5.1.1 實驗環境摸擬 46 5.1.2 人臉表情資料庫 46 5.1.3 參數設定 47 5.2 系統效能評估 47 5.2.1 多重姿勢搜尋效能 48 5.2.2 參數搜尋方向估測之效能 53 5.2.3 強健式主動外觀模型搜尋演算法之效能 55 5.3 總結 61 第六章 結論與未來展望 63 6.1 結論 63 6.2 未來展望 63 參考文獻 64 PUBLICATION 66

    [1] T.F Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” In Proc. 5th European Conference on Computer Vision, Vol. 2, pp 484-498, 1998.
    [2] T. Cootes, G. Edwards, and C. Taylor, “Active Appearance Models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, no. 6, pp.681 -685 , 2001.
    [3] G. Edwards, C. Taylor, and T. Cootes, “Interpreting face images using active appearance models,” In Proc. IEEE Int’l Conf. Automatic Face and Gesture Recognittion, pp. 300-305, 1998.
    [4] S. C. Mitchell, J. G. Bosch, B. P. F. Lelieveldt, R. J. van der Geest, J. H. C. Reiber, and M. Sonka, “3-D active appearance models : Segmentation of cardiac MR and ultrasound images,” IEEE Trans. Medical Imaging, Vol. 21, no. 9, pp.1167-1178, 2002.
    [5] Simon Lucey, Iain Mattews, Chango Hu, Zara Ambadar, Fernando de la Torre, and Jeffry Chon, “AAM Derived Face Representations for Robust Facial Action Recognition,” International Conference on Automatic Face and Gesture Recognition, pp.155-160, 2006.
    [6] M. B. Stegmann, ” Object tracking using active appearance models,” in Proc. 10th Danish Conf. Pattern Recognition and Image Analysis, Vol.1, pp. 54–60, 2001 .
    [7] Cootes, T.F., Edwards, G., and Taylor, C.J. ”A comparative evaluation of active appearance model algorithms,” In P. Lewis and M. Nixon, editors, 9th British Machine Vison Conference, Vol. 2. pp. 680-689, 1998.
    [8] Theobald, Barry-John, Matthews, I., and Baker, S. ”Evaluating error functions for robust active appearance models,” In Proc. International Conf. Automatic Face and Gesture Recognition. pp. 149-154, 2006.
    [9] B. Fasel and J. Luettin, “Automatic facial expression analysis : a survey,” Pattern Recognition ,Vol. 36, pp. 259-275, 2003.
    [10] Padgett, C. and Cottrell, G. W. “Representing face images for emotion classification,” Advances in Neural Information Processing Systems, M. Mozer, M. Jordan, and T. Petsche, eds., Vol 9, pp 894-807, Cambridge, MA. MIT Press, 1997
    [11] R.O. Duda, P.E. Hart, and D.G. Stork, “Pattern Classification,” Wiley-Interscience, Second Edition,pp. 114-117, 2001.
    [12] W. Fellenz, J. Taylor, N. Tsapatsoulis, S. Kollias, “Comparing Template-based, feature-based and supervised classification of facial expressions form static images,” In Proceedings of Circuits, Systems, Communications and Computers , pp. 5331-5336, 1999
    [13] J. Lien, “Automatic recognition of facial expression using hidden Markov models and estimation of expression intensity,” Ph.D. Thesis, The Robotics Institute, CMU, 1998.
    [14] Wu, Y. T., Kanade, T., Cohn, J.F., and Li, C.C., “Optical flow estimation using wavelet motion model,” IEEE International Conference on Computer Vision, pp.992-998, 1998.
    [15] C. Huang, Y, Huang, ” Facial expression recognition using model-based feature extraction and action parameters classification,” Journal of Visual Communication and Image Representation, Vol.8 ,no. 3, pp.278-290, 1997.
    [16] T.F. Cootes, C.J. Taylor, D. Cooper, and J. Graham, “Active Shape Models – Their Training and Application,” Computer Vision and Image Understanding, Vol. 61, no. 1, pp. 38-59, 1995.
    [17] I. Matthews and S. Baker, “Active Appearance Models revisited,” International Journal of Computer Vision, Vol.60, no. 2, pp. 135-164, 2004.
    [18] R. A. Johnson and D. W. Wichern, ”Multivariate Statistics, A Practical Approach,” Chapman & Hall, 1988.
    [19] T. Kanade, J. Cohn, and Y. Tian, ”Comprehensive Database for Facial Expression Analysis,” IEEE Intelnational Conference on Automatic Face and Gesture Recognition,. Grenoble, France. 2000.
    [20] 陳章毅 : 一種以Delaunay三角網為基礎之階層式空間群集演算法, 逢甲大學,碩士論文, 民國94年.
    [21] Yui Man Lui, J.R. Beveridge, A.E. Howe, L.D. Whitley, “Evolution strategies for matching active appearance models to human faces,” IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp.1-7, 2007.
    [22] T. Kanade and J. F. Cohn, Automatic Face Analysis, http://www-2.cs.cmu.edu/~face/, July. 2008.

    QR CODE
    :::