| 研究生: |
陳叡寬 Jui-Kuan Chen |
|---|---|
| 論文名稱: |
可變形光學液體平凸透鏡製作及功能量測並結合電調整透鏡及適應性光學系統 Fabrication and characterization of optofluidic flexible plano-convex lens integrated with electrically tunable liquid lens and adaptive optics system |
| 指導教授: |
傅尹坤
Yiin-Kuen Fuh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 液體透鏡 、適應性光學 、可變形反射鏡 、球形像差 |
| 外文關鍵詞: | Fluidic lens, Adaptive optics, Deformable mirrors, Aberration |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是關於液體透鏡和電調透鏡的相關性質與像差研究,並且結合適應性光學相關應用。本論文研究重點在(1) 電調透鏡與適應性光學校正像差的特徵, (2) 利用電調透鏡校正校差的性質,(3) 自製液體透鏡與適應性光學系統和電調透鏡相互像差校正。
首先我們先觀察電調透鏡的光學性質,並且找出各電流所誘發曲率變化的像差,接著嘗試使用適應性光學來校正。我們發現在電流為78~95mA,光焦度為-2.52~0.2D時的RMS (root mean square)能從0.55,0.53降到0.22,0.20μm。接著我們用Zernike 多項式來代表像差,其中Z₅(defocus)與電流變化有明顯改變,其他Z₁ (piston)/ Z₂ (tip)/ Z₃ (tilt)像差也有下降。
然後我們在觀察電調透鏡的校正像差能力。所以我們先使用AO系統來產生Z₁ (piston)像差和Z₅(defocus)像差,接著在使用電調透鏡來校正。可以發現在Z₁和Z5範圍為-0.3~0.3μm可以使RMS下降到0.2μm,而且其他像差也能有所下降。
本自製液體透鏡特點是改變薄膜的形狀,使薄膜有凹/平/凸三種變化,可以改變透鏡的光學性質,先觀察其薄膜變化和焦距。接著再用S-H感測器偵測注入0,0.02和0.04ml去離子水之RMS/ PV值為1.41μm/4.12μm,1.58μm/5.04μm和1.73μm/3.66μm。然後使用AO系統來校正,得到0.77μm/2.35μm,1.09μm/3.35μm和1.41μm/2.96μm,但是校正並非很好。所以我們加入電調透鏡,結果得到0.35μm/3.5μm,0.79μm/3.68μm和0.91μm/3.88μm。發現加入電調透鏡能令整個校正系統能力有所提升。
This study mainly research performance enhancement and aberration measurement of adaptive fluidic lens and electrically tunable lens.
One specific kind of electrically tunable lenses is utilizing curvature change via adjusting input currents which electromagnetically exerts pressure on liquid volume to achieve variable-focusing properties. Nevertheless, the nature of curvature change and refractive index mismatch causes inherent spatial aberrations that severely degrade image quality. The novelty of the presented method lies in the experimental study of optical aberrations such as root mean square (RMS), Strehl ratio and Zernike coefficients induced from electrically tunable lenses and use of adaptive optics to compensate for the wavefront errors. The optical properties of electrically tunable lens are quantitatively characterized by Shack-Hartmann measurements. Adaptive optics based scheme is demonstrated for the current range 78 to 95mA, resulting in a substantial reduction of the wavefront errors from 0.55, 0.53 to 0.22, 0.2μm, respectively, corresponding to the focal power tunability of -2.52 to 0.2 diopters. It is experimentally showed that defocus (Z5) aberration is the most significant one since the changes of lens curvature varies in proportional with changing currents, and can be significantly improved from 0.328μm to 0.156μm with adaptive optics. Similar improvements can be found in piston (Z₁)/ tip (Z₂)/ tilt (Z₃) aberrations with the integration of adaptive optics.
We use Adaptive optics system to generate aberration, and then we use electrically tunable lens to correct it. Electrically tunable lens based scheme is demonstrated for the Z₁=0.3μm, Z₁=-0.3μm, Z5=0.3μm and Z5=-0.3μm, resulting in a substantial reduction of the wavefront errors from 0.5, 0.4, 0.4, 0.6μm to 0.22, 0.2, 0.2, 0.2μm, respectively.
Finally, we add self-made fluidic lenses which have concave/plano/convex membrance to change optical properties in the adaptive optics and electrically tunable lens. First, we observe the change of lens profiles and focal length. Then we use the SH sensors detect the fluidic lens which injected 0, 0.02 and 0.04ml DI water, and get RMS / PV values 1.41μm/4.12μm, 1.58μm/5.04μm and 1.73μm/3.66μm. We use the AO system to correct the aberration, get 0.77μm/2.35μm, 1.09μm/3.35μm and 1.41μm/2.96μm. But the correction is not very good, so we add electrically tunable lens in the AO system, the result is 0.35μm/3.5μm, 0.79μm/3.68μm and 0.91μm/3.88μm. We find that adding electrically tunable lens in AO system enable improve the aberration correction.
[1] D.Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y.H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82(19), 3171-3173 (2003)
[2] D.Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, Y.H. Lo, “High-performance fluidic adaptive lenses, ” Appl. Opt. 43(4), 783-787 (2004)
[3] D.Y. Zhang, N. Justis, V. Lien and Y. H. Lo, “Fluidic adaptive lens of transformable lens type,” Appl. Phys. Lett. 84(21), 4194-4196 (2004)
[4] R. Marks, D. L. Mathine, J. Schwiegerling, G. Peyman and N. Peyghambarian, “Astigmatism and defocus wavefront correction via Zernike modes produced with fluidic lenses,” Appl. Opt. 48(19), 3580-3587 (2009)
[5] R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling and N. Peyghambarian, “Adjustable fluidic lenses for ophthalmic corrections,” Opt. Lett. 34(4), 515-517 (2009)
[6] R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling and N. Peyghambarian, “Adjustable adaptive compact fluidic phoropter with no mechanical translation of lenses,” Opt. Lett. 35(5), 739-741 (2010)
[7] N. Chronis, G. L. Liu, K. H. Jeong and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370-2378 (2003)
[8] Werber A, Zappe H, “Tunable microfluidic microlenses,” Appl. Opt. 44(16):3238–3245 (2005)
[9] H. B. Yu, G. Y. Zhou, F. K. Chau, F. W. Lee, S. H. Wang and H. M. Leung, “A liquid-filled tunable double-focus microlens,” Opt. Express 17(6), 4782-4790 (2009)
[10] Y. K. Fuh, M. X. Lin and Shyong Lee, “Characterizing aberration of a pressure-actuated tunable biconvex microlens with a simple spherically-corrected design,” Opt. Laser Technol. 50(12), 1677–1682 (2012)
[11] Liu, Chien-Sheng; Lin, Psang Dain, “A miniaturized low-power VCM actuator for auto-focusing applications,” Opt. Express 16(4), 2533-2540 (2008)
[12] Liu, Chien-Sheng; Lin, Psang Dain, “Miniaturized auto-focusing VCM actuator with zero holding current,” Opt. Express 17(12), 9754-9763 (2009)
[13] Y. K. Fuh and M. X. Lin, “Adaptive optics correction of a tunable fluidic lens for ophthalmic applications,” Opt. Commun. 308, 100–104 (2013)
[14] Y. K. Fuh, K. C. Hsu, M. X. Lin and J. R. Fan, “Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astigmatism,” Optik 124(8), 706–709 (2012)
[15] Y. K. Fuh, K. C. Hsu, M. X. Lin and J. R. Fan, “Adjustable fluidic lenses for correcting piston defocus astigmatism aberrations induced by MEMS deformable mirrors,” Microwave Opt. Technol. Lett. 54(7), 1701-1705 (2012)
[16] Y.K. Fuh, K.C. Hsu, J.R. Fan, “Roughness measurement of metals using a modified binary speckle image and adaptive optics,” Opt. Laser Technol. 50(3), 312–316 (2012)
[17] Y.K. Fuh, K.C. Hsu, J.R. Fan, “Rapid in-process measurement of surface roughness using adaptive optics,” Opt. Lett. 37(5), 848–850 (2012)
[18] Y. K. Fuh and W. C .Huang, “Adaptive optics assisted reconfigurable liquid-driven optical switch,” Opt. Commun. 300, 85–89 (2013)
[19] Y. K. Fuh, K. C. Hsu, J. R. Fan and M. X. Lin, “Induced aberrations by combinative convex concave interfaces of refractive-index-mismatch and capability of adaptive optics correction,” Microwave Opt. Technol. Lett. 53 (11), 2610–2615 (2011)
[20] H. Ren, S. T. Wu, “Optical switch using a deformable liquid droplet”, Opt. Lett. 35 (22) (2010) 3826-3828
[21] H. Yu, G. Zhou, F. S. Chau, F. Lee, “Fabrication and characterization of PDMS microlenses based on elastomeric molding technology”, Opt. Lett. 34 (21) (2009) 3454-3456
[22] H. B. Yu, G. Y. Zhou, F. K. Chau, F.W. Lee, S. H. Wang, H. M. Leung, “A liquid-filled tunable double-focus microlens”, Opt. Express 17 (6) (2009) 4782-4790
[23] G. H. Feng, Y. C. Chou, “Fabrication and characterization of optofluidic flexible meniscus–biconvex lens system”, Sens. and Actua. A 156 (2009) 342-349
[24] G. H. Feng, Y. C. Chou, “Flexible meniscus biconvex lens system with fluidic controlled tunable focus applications”, Appl. Opt. 48 (18) (2009) 3284-3290
[25] K. M. Hampson, “TOPICAL REVIEW Adaptive optics and vision”, J. Mod. Optic. 55 (21) (2008) 3425–3467
[26] T. G. Bifano, J. Perreault, R. K. Mali, M. N. Horenstein, “Microelectromechanical Deformable Mirrors”, IEEE J. Sel. Top. Quant. 5 (1) (1999) 83-89
[27] Thorlab, “Operation Manual Thorlabs Instrumentation”, http://www.thorlabs.com/Thorcat/16200/16204-D01.pdf
[28] Ca´novas C, Prieto PM, Manzanera S, Mira A, Artal P, “Hybrid adaptive-optics visual simulator,” Opt Lett. 35(2),196–198(2010)
[29] Grigsby B, Lockwood C, Baumann B, Gavel D, Johnson J, Ammons SM, et al , “ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system,” Proc. SPIE. 7018, 701841-1–701841-12. (2008)