跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃宇冬
Kevin Huang
論文名稱: 1950至2020全球海溫分布模式及其氣候影響:東部型與中部型ENSO的比較分析
Global Sea Surface Temperature Patterns and the impact of the Climate: A Comparative Analysis of Eastern and Central Pacific ENSO from 1950 to 2020
指導教授: 鍾高陞
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 41
中文關鍵詞: ENSO經驗正交函數全球海溫分布
外文關鍵詞: El Niño-Southern Oscillation, Empirical Orthogonal Function, Global Sea Surface Temperature
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究比較了兩種 ENSO,並比較使用了不同的分類方法的比較來了解不同的 ENSO 來增進對於 ENSO 的了解與預報能力的改善,並了解氣候變遷對 ENSO 的影響。分析 1950-2020的 EOF 分析月平均資料結果顯示,全球海溫存在著多個分布模式,區分之後可得之第 1.3.5的 EOF 模分別代表 1950 的到現在的氣候變化和東部型 ENSO 和中部型 ENSO,這兩種 ENSO有明顯不同,利用分析的各主數據,比較這兩種 ENSO 的海溫分布,以及各個層面的分析結果,可以得知這兩種 ENSO 在全球的各種影響,如美國西海岸和阿拉斯加差異很大,兩種 ENSO似乎導致了阿留申南部的相反影響,中部型 ENSO 阿留申群島南部氣壓出現了負矩平,類似正 PDO,東部型 ENSO 阿留申群島南部氣壓出現了正矩平,類似負 PDO,美國西海岸也出現了不同影響,其他地方如印度洋也導致了不同影響。


    This study compares the two types of ENSO using different classification methods to enhance
    understanding and forecasting capabilities of ENSO, as well as to understand the impact of climate
    change on ENSO. By using the Empirical Orthogonal Function (EOF), the analysis of the monthly
    mean data from 1950 to 2020 shows multiple distribution patterns of global sea surface temperatures
    (SSTs). Among these patterns, the 1st, 3rd, and 5th EOF modes represent climate changes since
    1950 and the distinct characteristics of Eastern Pacific and Central Pacific El Niño-Southern
    Oscillation (ENSO) events. By comparing the SST distribution and various aspects of these two
    types of ENSO, it is evident that they have different impacts on the global climate. For example, the
    effects on the west coast of the United States and Alaska differ significantly. The two ENSO types
    appear to have opposite influences on the southern Aleutian region: Central Pacific ENSO is
    associated with negative pressure anomalies, similar to a positive Pacific Decadal Oscillation (PDO),
    while Eastern Pacific ENSO is associated with positive pressure anomalies, similar to a negative
    PDO. These differences also manifest in various regions, such as the Indian Ocean.

    中文摘要 ........................................................................ i 英文摘要 ........................................................................ ii 誌謝 ........................................................................ iii 目錄 ........................................................................ iv 圖目錄 ........................................................................ v 一、 緒論.................................................................. 1 二、 資料來源和分析分法............................................. 4 2-1 資料來源............................................................ 4 2-2 分析方法............................................................ 4 2-2-1 經驗正交函數分析(EOF analysis)........................ 4 2-2-2 迴歸分析......................................................... 5 三、 海平面溫度的 EOF 和迴歸分析 6 3-1 未濾除和濾除平均年循環的海平面溫度的 EOF 分析比較... 6 3-2 ENSO 相關模態的全球海平面溫度的空間分布............... 9 四、 ENSO 相關模態的全球地表變數場的時空分析............... 11 4-1 10m 風場 11 4-2 2m 溫度.................................................................. 13 4-3 海平面氣壓場 14 4-4 降水場.................................................................. 15 五、 ENSO 相關模態的 850,500,和 200 百帕等壓面的風場(u, v, ω),溫度場(t)和重力位高度場(z)的時空分析............... 17 5-1 850 百帕等壓面結果............................................. 17 5-2 500 百帕等壓面結果.......................................... 21 5-3 200 百帕等壓面結果 24 六、 討論.................................................................. 28 七、 結論與未來展望......... 29 參考文獻 ........................................................................ 30

    Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002:
    The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over
    the global oceans. J. Climate, 15, 2205–2231,
    Boyin Huang, Peter W. Thorne, Viva F. Banzon, Tim Boyer, Gennady Chepurin, Jay H. Lawrimore,
    Matthew J. Menne, Thomas M. Smith, Russell S. Vose, and Huai-Min Zhang, 2017: NOAA
    Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. [indicate subset
    used]. NOAA National Centers for Environmental Information.
    Capotondi, A. et al. , 2015: Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96, 921–938.
    Deser, C., A. S. Phillips, and J. W. Hurrell, 2004: Pacific Interdecadal Climate Variability:
    Linkages between the Tropics and the North Pacific during Boreal Winter since 1900. J.
    Climate, 17, 3109–3124.
    Hu, X., S. Yang and M. Cai, 2016: Contrasting the eastern Pacific El Niño and the central Pacific
    El Niño: process-based feedback attribution. Clim Dyn, 47, 2413–2424,
    Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J.,
    Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D. Thépaut,
    J-N. ,2023: ERA5 hourly data on single levels from 1940 to present. Copernicus Climate
    Change Service (C3S) Climate Data Store (CDS).
    Kao, H., and J. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J.
    Climate, 22, 615–632.
    Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. Statistical
    Forecasting Project Rep. 1, MIT Department of Meteorology, 49.
    Newman, M., and Coauthors, 2016: The Pacific Decadal Oscillation, Revisited. J. Climate, 29,
    4399–4427.
    National Center for Atmospheric Research Staff (Eds), 2013: The Climate Data Guide: Empirical

    -31-

    Orthogonal Function (EOF) Analysis and Rotated EOF Analysis. Last modified 22 Jul 2013,

    https://climatedataguide.ucar.edu/climate-tools/empirical-orthogonal-function-eof-analysis-
    and-rotated-eof-analysis.

    Trenberth, K. E., and D. P. Stepaniak, 2001: Indices of El Niño Evolution. J. Climate, 14,
    1697–1701.

    QR CODE
    :::