跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃丞宇
Cheng-yu Huang
論文名稱: 850nm光脈衝激發次兆赫波發射器
Sub-THz Photonic-Transmitters by 850nm Wavelengths Optical Pulse Pumping
指導教授: 許晉瑋
Jin-wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: THz光發射器單極圓碟天線分離-傳輸-複合光二極體單載子傳輸光二極體
外文關鍵詞: photonic-transmitters, THz
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文的研究中我們展示了兩個新穎的光電發射器,一個是利用低溫成長砷化鎵(LTG-GaAs)為基材的分離式傳輸複合光二極體(STR-PD) ,另一者是以砷化鎵/砷化鋁鎵(GaAs/AlGaAs)為基材的單載子傳輸光二極體(UTC-PD)。此兩種元件結合槽孔式的單極圓碟微波天線,其具有無需要整合在Si-lens的優點。藉由中心波長為800nm超快速飛秒光脈衝光訊號的激發下,我們的光電發射器可幅射出一個強而有力的次兆赫波脈衝訊號(最大功率20mW)和一個較寬的頻帶(100GHz到250GHz)。並由兆赫波時域光譜(TDS)系統量測並轉換成頻域訊號,此頻域訊號可應用在兆赫波資料連結系統內。而當元件操作在逆偏下,此光電發射器的峰值功率(峰值電場平方)隨著外加偏壓有顯著的變化,並經由訊號歸一化分析後,我們可以清楚的看到峰值功率與外加逆偏壓呈現一線性關係,此線性現象對於我們調制光次兆赫波的傳輸資料,有很大的益助。


    In this paper, we demonstrated two novel photonic transmitters; one is composed of low-temperature-grown GaAs (LTG-GaAs) based separated-transport-recombination photodiode (STR-PD) and the other is GaAs/AlGaAs based Uni-traveling-carrier photodiode (UTC-PD). Both devices are integrated with broadband micromachined monopole antennas but without the integration with Si-lens. Under femto-second optical pulse illumination which the wavelength of around 800nm, the photonic-transmitter can radiate strong sub-THz pulses (20mW peak-power) with a wide bandwidth (100~250GHz). Such result was directly measured by a THz-TDS system, which could be used as a THz UWB data link system. The bias dependent high-peak-power performance of our device implies its application of photonic emitter and data modulator in photonic sub-THz UWB system.

    第一章 簡介 1 1-1 兆赫波之應用 1 1-2 兆赫波產生之方式 3 1-3論文架構 5 第二章 光檢測器原理 7 2-1光二極體介紹 7 2-2行波式光二極體原理與頻率限制 9 2-2-1行波式光二極體等效電路 9 2-2-2行波式光二極體頻寬限制 11 2-3傳統光二極體的磊晶結構原理與問題 14 2-3-1傳統PIN砷化鎵光二極體 14 2-3-2傳統PIN低溫砷化鎵光二極體 15 2-4分離式傳輸復合行波光二極體 17 圖2-11 分離式傳輸復合行波式光二極體在加大電場操作下之電場分佈改變示意圖 19 2-5吸光層最佳化設計之單載子傳輸行波式光二極體 20 2-6與之整合的天線結構與模擬 23 第三章 光檢測器設計與製作 27 3-1 磊晶設計 27 3-2 製作流程 30 3-2-1曝光顯影製程簡介 30 3-2-2 P-contact金屬化製程 31 3-3-2主動區蝕刻 32 3-2-3 N-contact金屬化製程 34 3-2-4快速熱回火 35 3-2-5元件區蝕刻 35 3-2-6平坦化與絕緣 36 3-2-7金屬導線連接線 38 3-2-8試片研磨與背部蝕刻 39 3-2-9元件切割 40 第四章 量測討論 45 4-1 直流量測 45 4-2 脈衝量測系統 47 4-3 脈衝量測結果與討論 49 4-3-1 脈衝量測結果分析及說明 49 4-3-2 Pulse量測頻譜分析及說明 55 第五章 結論 61 5-1 總結 61 5-2 未來方向 61 參考資料 62

    [1] M. Z. Win and R. A. Scholtz, “ Impulse Radio: How it works,” IEEE Commun. Lett., vol. 2, pp. 36-38, 1998.
    [2] K. Humphreys, J.P. Loughran, M. Gradziel, W. Lanigan, T. Ward, J. A. Murphy, C. O''Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” Proc. EMBC, vol. 1, pp. 1302 - 1305, 2004.
    [3] K. Kato, “Ultrawide-Band/High-Frequency Photodetectors,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1265-1281, Jul., 1999.
    [4] J. R. Pardo, J. Cernicharo, E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications,” IEEE Trans. on Antennas and Propagation, vol. 49, no. 12, pp. 1683 – 1694, Dec. 2001.
    [5] M. C. Gaidis, H. M. Pickett, C. D. Smith, S. C. Martin, R. P. Smith, P. H. Siegel, “A 2.5-THz receiver front end for spaceborne applications,” IEEE Trans. on Microwave Theory and Tech., vol.48, no. 4, pp. 733 – 739, Apr., 2000.
    [6] H. Eisele, A. Rydberg, and G. I. Haddad, “Recent advances in the performance of InP Gunn devices and GaAs TUNNET diodes for the 100-300GHz frequency range and above,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 626-631, Apr., 2000.
    [7] Y. P. Gousev, I. V. Altukhov, K. A. Korolev, V. P. Sinis, M. S. Kagan, E. E. Haller, M. A. Odnoblyudov, I. N. Yassievich, and K.-A. Chao, “Widely tunable continuous-wave THz laser,” Appl. Phys. Lett., vol. 75, pp. 757-759, Aug., 1999.
    [8] N. Orihashi, S. Suzuki, and M. Asada, “One THz harmonic oscillation of resonant tunneling diodes, ” Appl. Phys. Lett., vol. 87, pp. 233501, 2005.
    [9] M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M. Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, R. Pullela, “Active and nonlinear wave propagation devices in ultrafast electronics and optoelectronics [and prolog]” Proceedings of the IEEE, vol. 82, pp. 1037-1059, Jul., 1994.
    [10] H. Ito, T. Furuta, F. Nakajima, K. Yoshino, T. Ishibashi, “Photonic Generation of Continuous THz Wave Using Uni-Traveling-Carrier Photodiode,” J. of Lightwave Technol., vol. 23, pp. 4016-4021, Dec., 2005.
    [11] Kirk Steven Giboney, Ph. D. Thesis, University of California at Santa Barbara, 1995.
    [12] Yi-Jen Chiu, Ph. D. Thesis, University of California at Santa Barbara, 1999.
    [13] 許晉瑋,金屬-半導體-金屬 行波式光偵測器,國立臺灣大學/光電工程學研究所博士論文(2001)
    [14] Y. -L. Huang, and C. -K. Sun, “Nonlinear saturation behaviors of high-speed p-i-n photodetectors,” J. of Lightwave Technol., vol. 18, pp. 203-212, Feb., 2000.
    [15] K. J. Williams, R. D. Esman, and M. Degenais, “Nonlinearities in p-i-n Microwave Photodetectors,” J. of Lightwave Technol., vol. 14, pp. 84-96, Jan., 1996.
    [16] S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast Carrier Dynamics in III-V Semiconductors Grown by Molecular-Beam Epitaxy at Very Low Substrate Temperatures,” IEEE J. of Quantum Electronics, vol. 28, pp. 2464-2472, 1992.
    [17] J. P. Ibbetson, Ph. D. Thesis, University of California at Santa Barbara, 1998.
    [18] J. -W. Shi, Y. -H. Chen, K. G. Gan, Y. J. Chiu, John. E. Bowers, M. -C. Tien, T.-M. Liu, and C. -K. Sun, “Nonlinear Behaviors of Low-Temperature-Grown GaAs-Based Photodetectors Around 1.3-μm Telecommunication Wavelength,” IEEE Photon. Tech. Lett., vol. 16, pp. 242-244, Jan., 2004.
    [19] C. -K. Sun, Y. -H. Chen, J. -W. Shi, Y. -J. Chiu, K. G. Gan, and J. E. Bowers, “Electron relaxation and transport dynamics in low-temperature-grown GaAs under 1eV optical excitation,” Appl. Phys. Lett., vol. 83, pp. 911-913, Aug., 2003.
    [20] H. Ito, S. Kodama, Y. Muramoto, T. Furuta, T. Nagatsuma, T. Ishibashi, “High-Speed and High-Output InP–InGaAs Uni-traveling Carrier Photodiodes,” IEEE J. of Sel. Topics in Quantum Electronics. vol. 10, pp. 709-727, Jul./Aug., 2004.
    [21] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, World Scientific, Singapore, p. 2., 1996.
    [22] N. Li, X. Li, S. Demiguel, X. Zheng, J. C. Campbell, D. A. Tulchinsky, K. J. Williams, T. D. Isshiki, G. S. Kinsey, and R. Sudharsansan, “High-saturation-current charge-compensated InGaAs-InP uni-traveling-carrier photodiode” IEEE Photon. Tech. Lett., vol. 16, pp. 864-866, 2004.
    [23] Y. -C. Liang, and N. -W. Chen, “An ultra-broadband coplanar waveguide-fed circular monopole antenna,” EuCAP 2007, Edinburgh, UK, Nov., 2007.
    [24] W. L. Stutzman and G. A. Thiele, Antenna theory and design, Chapter 6, 2nd Ed., John Wiely and Sons, 1998.
    [25] 莊達人, “VLSI製造技術”, 高立圖書公司, 1995.
    [26] T. -A. Liu, G. -R. Lin, Y. -C. Chang, C. -L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol. 13, Issue 25, pp. 10416-10423, Dec., 2005.
    [27] Y. -T. Li, J. -W. Shi, C. -L. Pan, C. -H. Chiu, W. -S. Liu, N. -W. Chen, C. -K. Sun, and J. -I. Chyi, “Sub-THz Photonic Transmitters Based on Separated-Transport-Recombination Photodiodes and a Micromachined Slot Antenna,” IEEE Photon. Tech. Lett., vol. 19, pp. 840-842, Jun., 2007.
    [28] M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Applied Optics, vol. 36, pp. 7853-7859, Oct., 1997.
    [29] N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs Uni-Traveling-Carrier Photodiode With Improved 3-dB Bandwidth of Over 150GHz,” IEEE Photon. Tech. Lett., vol. 10, pp. 412-414, Mar., 1998.
    [30] A. Hirata, T. Furuta, H. Ito, and T. Nagatsuma, “10-Gb/s Millimeter-Wave Signal Generation Using Photodiode Bias Modulation,” J. of Lightwave Technol., vol. 24, pp. 1725-1731, Apr., 2006.
    [31] R. Xu, Y. Jin, and C. Nguyen, “Power-Efficient Switching-Based CMOS UWB Transmitters for UWB Communications and Radar Systems,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 3271-3277, Aug., 2006.
    [32] S. Ramsey, E. Funk, and C. H. Lee, “A wireless photoconductive receiver using impulse modulation and direct sequence code division,” Int. Topical Meeting Microwave Photon., vol. 1, pp. 265-268, 1999.
    [33] H. Togo, P. -C. P. Sah, N. Shimizu, T. Nagatsuma, “Gigabit Impulse Radio Link Using Photonic Signal-Generation Techniques,” European Microwave Conference 2005, vol. 1, pp. 4-7, Oct., 2005.
    [34] T. -A. Liu, G. -R. Lin, Y. -C. Chang, C. -L. Pan, “Wireless audio and burst communication link with directly modulated THz photoconductive antenna,” Optic. Express, vol. 13, Issue 25, pp. 10416-10423, Dec., 2005.
    [35] S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1032-1038, Jun., 2001.
    [36] J. -W. Shi, Y. -T. Li, C. -L. Pan, M. L. Lin, Y. S. Wu, W. S. Liu, and J. -I. Chyi, “Bandwidth enhancement phenomenon of a high-speed GaAs-AlGaAs based unitraveling carrier photodiode with an optimally designed absorption layer at an 830nm wavelength,” Appl. Phys. Lett., vol. 89, pp. 053512, 2006.
    [37]K. P. Yang﹐P. L. Richaeds﹐and Y. R. Shen, “Generation of Far-Infrared Radiation by Picosecond Light Pulses in LiNbO3,” Appl. Phys. Lett., vol. 19, pp 320-323, 1971.

    QR CODE
    :::