跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉思勝
Si-sheng Ye
論文名稱: 不銹鋼與低合金鋼之異質銲接件機械性質研究
指導教授: 黃俊仁
Jiun-Ren Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: A508低合金鋼SS304L不銹鋼鎢極氣體保護電弧銲異質銲接
外文關鍵詞: A508 low-alloy steel, SS304L stainless steel, gas tungsten arc welding(GTAW), dissimilar-metal welding
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討A508低合金鋼與SS304L不銹鋼異質銲接件之機械性質及微結構。以鎢極氣體保護電弧銲及52M鎳基填料進行多道次對接銲接。探討不同後熱處理條件及銲件位置對於金相、拉伸強度、衝擊能及破斷面所產生影響。
      研究結果顯示銲件不同位置的金相組織差異甚大,銲道靠近界面處產生柱狀晶與細小晶粒交錯的複雜組織。A508低合金鋼熱影響區因Ni, Cr元素擴散關係,有一明顯較軟區域。整個銲件的衝擊性能良好,以SS304L端最優異。衝擊斷面呈韌渦狀的延性破壞特徵。


    This study discussed mechanical properties and microstructures for dissimilar-metal welding of A508 low-alloy steel and SS304L stainless steel. Multipass butt welded specimens were prepared by gas tungsten arc welding (GTAW) method with 52M Ni-based filler material. The effects of different post-weld heat treatment processes and locations of weldment on the microstructure, tensile strength, impact energy and fracture mechanism were evaluated.
    The results showed that the variations of microstructures across the weld were large. Columnar grains mixed with fine grains occurred at the interfacial side of the weld. There is a relative soft area in the heat-affected zone of A508 low-alloy steel due to the diffusion of Ni and Cr elements. In general, the impact property of this dissimilar-metal weldment was excellent and many dimples appeared on the fracture surface.

    目錄 摘要 i Abstract ii 誌謝 iii 第一章緒論 1 1.1 研究動機 1 第二章 文獻與理論回顧 3 2.1 材料介紹 3 2.1.1 不銹鋼介紹 3 2.1.2 依金相組織分類 4 2.1.3 低合金鋼介紹 6 2.1.4 低合金鋼性能 8 2.1.5 銲接高強度低合金鋼介紹 11 2.2 銲接方法 11 2.2.1 鎢極氣體保護電弧銲(Gas Tungsten Arc Welding ,GTAW) 11 2.2.2 低碳鋼銲接熱影響區 12 2.2.3 單道次與多道次銲接之影響 15 2.2.4 鋼材異質銲接之文獻回顧 15 2.3 退火處理 16 第三章 實驗方法與設備 19 3.1 實驗材料 20 3.2 銲接加工 20 3.3 退火熱處理 21 3.4 試片加工 21 3.4 機械性質 24 3.4.1 拉伸試驗 24 3.4.2 硬度試驗 25 3.4.3 衝擊試驗 26 3.5 金相觀察 28 3.6 破斷試片觀察 30 第四章 實驗結果與討論 31 4.1 金相觀察結果 31 4.2 拉伸性質 40 4.3 硬度分布 43 4.4 衝擊試驗結果 44 4.5 拉伸斷面分析 45 4.6 衝擊斷面分析 47 第五章結論 56 5.1 研究結果 56 5.2 未來展望 56 參考文獻 57

    參考文獻
    [1] https://www.iaea.org/PRIS/WorldStatistics/ThreeYrsUnitCapabilityFactor.aspx
    [2] http://anuclear-safety.twenergy.org.tw/Faq/index_more?id=77
    [3] https://deferroalloy.wordpress.com/
    [4] http://www.twword.com/wiki/%E4%BD%8E%E5%90%88%E9%87%91%E9%8B%BC
    [5] 李光福,楊武,“核電站異材銲接件的破裂問題與應力腐蝕評價方法”,核安全,第2期,40頁。(2003)
    [6] 趙光榮,“氬氣鎢極電銲能力本位訓練教材_鋁板平銲機本銲道銲接”,行政院勞工委員會職業訓練局。(2001)
    [7] S. Liu and J. E. Indacochea, “Property and Selection: Irons, Steels and High-Performance Alloys,” Metal Handbook, Vol. 1, pp. 603-613, 1990.
    [8] A.S. Aloraier, R.N. Ibrahim, J. Ghojel, “Eliminating post-weld heat treatment in repair welding by temper bead technique: role bead sequence in metallurgical changes,” Journal of Materials Processing Technology, Vol. 153-154, pp. 392-400, 2004.
    [9] S. L. Jeng, H. T. Lee, T. E. Weirich, W. P. Rebach, “Microstructual Study of the Dissimilar Joints of Alloy 690 and SUS 304L Stainless Steel,” Materials Transactions, Vol. 48, No. 3, pp. 481-489, 2007.
    [10] S.L. Jeng, Y.H. Chang, “The influence of Nb and Mo on the microstructure and mechanical properties of Ni–Cr–Fe GTAW welds,” Materials Science and Engineering, Vol. 555, pp. 1-12, 2012.
    [11] P. Mithilesh, D. Varun, A.R.G. Reddy, K.D. Ramkumar, N. Arivazhagan, S. Narayanan, “Investigations on Dissimilar Weldments of Inconel 625 and AISI 304,” Procedia Engineering, Vol. 75, pp. 66-70, 2014.
    [12] 周峰,趙霞,查向東,馬穎澈,劉奎,“一種新型鎳基耐蝕合金與304奧氏體不銹鋼異種金屬銲接接頭的組織和力學性能”, 金屬學報,第50卷,第11期,1335-1342頁。(2014)
    [13] 丁傑,張志明,王儉秋,韓恩厚,唐偉寶,張茂龍,孫志遠,“三代核電接管安全端異種金屬銲接接頭的顯微表徵” ,金屬學報,第51卷,第4期,425-439頁。(2015)
    [14] W. Guo, S. Dong, W. Guo, J.A. Francis, L. Li, “Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel,” Materials Science and Engineering, Vol. 625, pp. 65-80, 2015.
    [15] “Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications,” ASTM A240/A240M, American Society for Testing and Materials, United states of America. (2016)
    [16] Y. Xie, Y. Wub, J. Burns, J. Zhang, “Characterization of stress corrosion cracks in Ni-based weld alloys 52,” Materials Characterization, Vol. 112, pp. 87-97, 2016.
    [17] “Standard Test Methods for Tension Testing of Metallic Materials,” ASTME8, American Society for Testing and Materials, United States of America. (2012)
    [18] “Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” ASTM E23, American Society for Testing and Materials, United States of America. (2013)
    [19] “Method of Vickers Hardness Test,” CNS 2115 Z8004, Chinese National Standards, Taiwan. (1983)
    [20] “Standard Practice for Microetching Metals and Alloys”, ASTM E407, American Society for Testing and Materials, United States of America. (2015)
    [21] 楊玉森,徐啟耀,蘇湘淳,許恭華,”熱處理對不銹鋼組織控制與機械性能之研究,” 國立高雄第一科技大學機械與自動化工程研究所,碩士論文。 (2014)

    QR CODE
    :::