| 研究生: |
周萬發 Wan-Fa Chou |
|---|---|
| 論文名稱: |
兩階段變壓吸附程序濃縮與回收廢氣中 Study of Recovery and Concentration of SO2 / CO2 from Flue Gas by Two-Stage Pressure Swing Adsorption |
| 指導教授: |
周正堂
Cheng-tung Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 模擬 、真空變壓吸附 、二氧化碳 、二氧化硫 |
| 外文關鍵詞: | simulation, vacuum swing adsorption, carbon dioxide, sulfur dioxide |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中利用二階段真空變壓吸附(two-stage vacuum swing adsorption)製程來分離煙道氣中的SO2,CO2 和NO2。將進料組成設為18%CO2、0.5%SO2、0.13%NO2、其餘為N2 。第一階段SO2-VSA (vacuum swing adsorption) 程序吸附劑採用Doewx MWA-1處理二氧化硫與二氧化氮,吸附等溫線為loading ratio correlation等溫線;第二階段CO2-VSA程序吸附劑採用13X沸石處理二氧化碳,吸附等溫線為Langmuir等溫線。模擬時所用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式,因吸附劑顆粒大,故可忽略吸附塔內壓力降。在操作過程中,將第一階段SO2-VSA所釋出的廢氣儲存在儲存槽中,而第二階段CO2-VSA是以儲存槽中的氣體為進料,進一步處理CO2 氣體。
二階段VSA係同時模擬,此程序可將為0.5﹪SO2濃縮至6.43%,回收率達92.13%;0.13﹪NO2濃縮至1.00%,回收率達54.99%;18﹪CO2濃縮至71.88%,回收率達84.31%;本研究並探討各操作參數(諸如:各個步驟操作時間、儲存槽體積與沖洗比,進料壓力和脫附壓力等)對程序效能的影響。
This study uses a two-stage vacuum swing adsorption process to separate SO2, NO2 and CO2 from flue gas. Simulation is performed for the bulk separation of SO2/NO2/CO2/N2 (0.5/0.13/18/81.37 vol %) system. The first stage of SO2-VSA (vacuum swing adsorption) utilizes Dowex MWA-1 as adsorbent to recover SO2 and NO2, and the second stage of CO2-VSA utilizes 13X zeolite as adsorbent to recover CO2. The equilibrium mixture adsorption in SO2-VSA and CO2-VSA can be expressed by the loading ratio correlation (LRC) and extended Langmuir isotherm, respectively. This study uses the equilibrium model and the pressure drop can be neglected. We assumed instantaneous equilibrium between the solid and gas phase with non-isothermal operation. In operating process, the waste stream of SO2-VSA is taken as the feed stream of CO2-VSA.
Two-stage vacuum swing adsorption process is simultaneously simulated. The 0.5%SO2 in the feed can be concentrated to 6.43% in the product with a recovery of 92.13%, the 0.13%NO2 in the feed can be concentrated to 1.00% in the product with a recovery of 54.99%, and the 18%CO2 in the feed can be concentrated to 71.88% in the product with a recovery of 84.31%. The effects of operating variables such as tank volume, P/F ratio, adsorption pressure, desorption pressure, and steps time are investigated on the performance of this study.
1.Berlin, N. H., U.S. Patent 3,280,536, assigned to Esso research and engineering company (1966).
2.Bird, R.B., W.E. Stewart and E. N. Lightfoot, Transport Phenomena, 503, Wiley, New York (1960).
3.Chue, K.T., J.N. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598 (1995).
4.Diagne D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89 (1994).
5.Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
6.Doong, S.J., and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
7.Doong, S.J., and R.T. Yang,“Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987b).
8.Dong, F., L. Hongmei, K. Akio, G. Motonobu and H. Tsutomu, “The Petlyuk PSA process for the separation of ternary gas mixtures: exemplification by separating a mixture of CO2–CH4–N2”, Separation and Purification Technology, 16, 159-166 (1999).
9.Farooq, S., and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990b).
10.Gomes, V. G., and M. M. Hassan “Coalseam methane recovery by vacuum swing adsorption”, Separation and Purification Technology, 24, 189-196 (2001).
11.Guerin de Montgareuil, P., and D. Domine, U.S. Patent 3,155,468, to Societe L, Air Liquide, Paris (1964).
12.Hassan, M.M., D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
13.Hassan, M. M., and N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
14.Izumi, J., “Hydrogen Sulfide Removel with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M. Suzuki), Kodan-sha, Tokyo, 293-299 (1992a).
15.Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”, Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84 (1992b).
16.Jee, J., M. Kim and C. Lee,“Adosorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-component Mixtures”, Ind. Eng. Chem Res. , 40, 868-878 (2001).
17.Kikkinides, E.S., and R.T. Yang, “Simultaneous SO2/NOx Removel and SO2 Recovery from Flue Gas by Pressure Swing Adsorption ”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
18.Kikkinides, E.S., and R.T. Yang, “Gas Separation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers”, Ind. Eng. Chem. Res., 32(10), 2365-2372 (1993).
19.Kikkinides, E.S., R.T. Yang and S.H. Cho, “Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
20.Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorption of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
21.Kowler, D.E., and R. H. Kadlec, “The Optimal Control of a Periodic Adsorber”, AIChE. J., 18, 1027 (1972).
22.Ko, D., R. Siriwardane and L. T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration”, Ind. Eng. Chem. Res., 42,339-348 (2003).
23.Lee, C., J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., Vol.45, No.3 (1999).
24.Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, U.S. Patent 3,142,547 to Esso Research and Engineering Company (1964).
25.McCabe, W.L., J.C. smith and P. Harriott, Unit operations of Chemical Engineering, 325, 406-408, Fourth Edition, McGraw-Hill, Inc. (1985).
26.Mofarahi, M., M. Sadrameli and J. Towfighi, “Four-Bed Vacuum Pressure Swing Adsorption Porcess for Propylene/Propane Separation”, Ind.Eng.Chem.Res., 44,1557-1564 (2005).
27.Nakao, S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114 (1983).
28.Na, B. K., H. Lee, K. K. Koo and H. Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Gas Using Activated Carbon”, Ind. Eng. Chem. Res., 41, 5498-5503 (2002).
29.Olajossy, A., A. Gawdzik, Z. Budner and J. Dula, “Methane separation from coal mine methane gas by vacuum pressure swing adsorption”, Chemical engineering research & design, 81, 474-482 (2003).
30.Park, J., J. Kim and S. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., Vol. 46, No.4 (2000).
31.Park, J. H., H. T. Beum, J. N. Kim and S. H. Cho, “Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., 41, 4122-4131 (2002).
32.Pugsley, T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481 (1994).
33.Rege, S. U., and R. T. Yang, “Propane/propylene separation by pressure swing adsorption:sorbent comparison and mulitiplicity of cyclic steady states”, Chemical Engineering Science, 57,1139-1149 (2002).
34.Rubel, A.M., and J.M.Stencel, The Effect of Low-Coneentration SO2 on the Adsorption of NO from Gas over Activated Carbon. 521-526. Fuel (1997).
35.Ruthven, D.M., Principles of Adsorption & Adsorption Process, 209-213, Wiley (1984).
36.Shin, H.S., and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
37.Sircar, S., and J.W. Zondlo, U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).
38.Siriwardane, R. V., M. Shen, E. P. Fisher and J. A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels, 15, 279-284 (2001).
39.Siriwardane, R. V., M. S. Shen, and E. P. Fisher, “Adsorption of CO2 on Zeolites at Moderate Temperstures”, Energy & Fuels.,19,1153-1159 (2005).
40.Skarstrom, C.W., “Use of Adsorption Phenomena in Automatic Plant-Type Gas Analysis”, Ann., NY Acad. Sci., 72, 751 (1959).
41.Skarstrom, C.W.,“Fractionating gas mixtures by adsorption”, U.S. Patent 2,444,627, assigned to Esso research and engineering company (1960).
42.Smith, J.M., and H.C. Van Ness, Introduction to chemical Engineering Thermodynamics, p.109, 4th edith, McGraw-Hill Book Company (1987).
43.Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Separation and purification Technology 24,519-528 (2001).
44.Tamura, T., U.S. Patent 3,797,201, assigned to T. Tamura, Tokoy, Japan (1974).
45.Turnock, P. H., and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
46.Welty, J.R., C. R. Wicks and R.E. Wilson, Fundamentals of Momentum, Heat, and Mass Transfer, AppendixⅠ, John Wiley & Sons, Inc. (1983).
47.Yang, J., C. Lee and J. Chang,“Separation of Hydrogen Mixture by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res. , 36, 2789-2798 (1997).
48.Yang, R.T., and S.J. Doong, “Gas Separation by Pressure Swing Adsorption : A Pore Diffusion Model for Bulk Separation”, AIChE J., 31, 1829 (1985).
49.Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of Nox by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
50.Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).
51.Zhang, W., M. Jia, J. Yu and T. Wu, “Adsorption properties of Nitrogen Monoxide on Silver Ion-Exchanged Zeolites”, chem. master., 11,920-923 (1999).