跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳德
De Chen
論文名稱: 模糊類神經網路結合進化演算法運用在基頻通道等化器上
The use of Evolutionary-based Neuro-Fuzzy in channel equalization
指導教授: 賀嘉律
Chia-Lu Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 73
中文關鍵詞: 多層感知等化器類神經網路進化演算法倒傳遞演算法
外文關鍵詞: MLP, neural, EAs, BPA
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • 摘要 圖表、表目 第一章 緒論................................................1 1.1 數位通訊........................................1 1.2 等化器之分類....................................3 1.3 運用等化器之動機................................4 第二章 感知等化器(Perceptron equlizer).....................6 2.1 類神經網路概念..................................6 2.2 多層感知器(Multilayer perceptrons)..............10 2.3 消除碼際干擾(ISI)...............................14 2.4 lp Norm Back PropagationAlgorithm..............16 第三章 模糊系統(Fuzzy System)..............................22 3.1 前言............................................22 3.2 模糊系統基本定義................................23 3.3 模糊系統之架構..................................29 3.4 模糊適應等化器..................................33 第四章 進化演算法(Evolution Algorithm).....................39 4.1 EA基本架構.....................................39 4.2 初始染色體......................................41 4.3 評估(Evaluation)................................42 4.4 交配(Recombination..............................43 4.5 染色體突變(Chromosome Mutation).................44 4.6 染色體選擇(Chromosome Selection)................45 4.7 風險分析(Risk Analysis)........................46 第五章 模擬結果(Simulation Results)........................47 5.1 系統模擬結構....................................47 5.2 收斂特性(Convergence Characteristics............48 5.3 適應函數(Fitness Function)......................53 5.4 決策曲線(Decision Boundary).....................55 5.5 位元錯誤率(Bit Error Rate)......................59 結 論......................................................65 附 錄......................................................67 參考文獻...................................................71

    [1] J.G. Proakis,“Digital Communication,”New York:GrawHill, 1989, 2nd ed.
    [2] P. Sarwal & M. D. Srinath,“A Fuzzy Logic System for Channel Equalization,”IEEE Transactions on Fuzzy System, Vol. 3, No. 2 , pp. 246-249, May 1995.
    [3] S. Haykin,“Adaptive Filter Theory,”Englewood Cliffs , NJ:Prentice-Hall, 1990.
    [4] S. U. H. Qureshi,“Adaptive Equalization,”Proc. Of the IEE, Vol. 73, No. 9, pp. 1349-1387, sep. 1985.
    [5] 葉怡成,“類神經網路模式應用與實作,”儒林圖書有限公司,1993.
    [6] S. Siu, G. J. Gibdon, and C. F. N. Cowan,“Decision feedback equalization using neural network structures and performance comparison with standard architecture,”IEE Proc. Part I, Communication, Speech, and Vision, Vol. 137, No. 4, pp. 221-225, August, 1990.
    [7] S. Siu, and C. F. N. Cowan,“Performance analysis of the norm back propagation algorithm for adaptive equalization,”IEE Proc. Part F, Vol. 140, No. 1, pp. 43-47, Feb. 1993.
    [8] S. Siu, C. H. Chang, and C. H. Wei,“ norm back propagation algorithm for adaptive equalization,”IEEE Trans. On Circuits and Systems ΙΙ:Analog and Digital Signal Processing , Vol. 42, No. 9, pp. 604-607, Sep. 1996.
    [9] Yoh-Han Pao,“Adaptive Pattern Recognition and Neural Networks,”Addison-Wesley Publishing Company, 1989.
    [10] 蘇木村,張孝德,“機械學習類神經網路、模糊系統以及基因演算法則,”全華科技圖書股份有限公司, 1997.
    [11] 林繼洲,“函數連結與模糊適應等化器效能評估,”元智大學, 1999.
    [12] Li-Xin Wang,“Fuzzy Systems Are Universal Approximators,” in Proc. IEEE 1992 Int. Conf. Fuzzy Systems, pp. 1163-1170, Mar. 1992.
    [13] Li-Xin Wang,“Adaptive Fuzzy Systems and Control,”Prentice Hall, 1994.
    [14] Ronald R. Yager, Dimitar P. Filev,“Essentials of Fuzzy Modeling and Control,”New York:J. wiley, c1194.
    [15] P. Power, F. Sweeney, C. F. N. Cowan,“EA Crossover Schemes for a MLP Channel Equaliser,”IEEE, vol. 1, pp. 407-410, 1999.
    [16] Back, Thomas, Evolutionary algorithm in theory and practice:evolution strategies, evolutionary programming, genetic algorithms, New York:Oxford University Press,1996.
    [17] G. J. Gibson, S. Siu, and C. F. N. Cowan,“The application of nonlinear structures to the reconstruction of binary signal,”IEEE Trans. On Signal processing, Vol. 39, No. 8, pp. 1887-1884, Aug., 1991.
    [18] 張清豪,“使用健全學習法則的多項式類神經網路等化器,”國立交通大學電子研究所博士論文, chapter 1, 1995.
    [19] 莊文仲,“多層感知等化器-使用進化演算法,”國立中央大學電機研究所碩士論文,2001.

    QR CODE
    :::