跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游佩琪
Pei-chi Yu
論文名稱: 以電漿輔助化學氣相沉積法製備超疏水薄膜及其膜材特性之研究
Preparation of superhydrophobic films by PECVD
指導教授: 陳暉
HuiChen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 67
中文關鍵詞: 附著性超疏水電漿聚合能率循環六氟苯
外文關鍵詞: C6F6, duty-cycle, plasma polymerization, super-hydrophobic, adhesion
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電漿輔助化學氣相沉積法(PECVD)製備超疏水氟碳薄膜,其成膜單體為六氟苯(Hexafluorobenzene; C6F6) ,探討連續式和脈衝式電漿對其製備之膜材特性的影響情形。亦由SEM與AFM觀察膜材表面形貌,和FTIR及XPS進行化學分析,來探討電漿製備超疏水氟碳膜之成膜機制。
    實驗結果顯示連續式電漿調控電源功率和沉積位置成膜,皆因單體持續解離而獲得平坦疏水性薄膜,而在低瓦數搭配遠離電源區成膜,可以提升對於基材之附著性質至4B。
    另一方面,藉由脈衝式電漿調控能率循環(DC)來降低單體解離和增加聚合反應的機率,結果顯示低功率和低DC在電漿區成膜,可獲得接觸角大於150°之超疏水薄膜且具有239 奈米之表面粗糙度。進一步藉由全氟己烷電漿驗證具有π-π鍵結之六氟苯,易受電漿活化而迅速在氣相成核團聚成高碳數分子團為表面粗糙度之成因。而於附著性探討中,添加甲基丙烯酸甲酯(MMA),發現隨著含量的增加有些微的提升薄膜之附著力,但也使得疏水性質的降低。


    Preparation of superhydrophobic films by plasma enhance chemical vapor deposition method using C6F6 as the monomer has been developed. The films were prepared by C6F6 plasma in continuous wave and pulsed wave. The effects of power and deposition position on the films were investigated by using SEM、AFM、FTIR and XPS.
    In continuous wave, the smooth hydrophobic films was obtained. And with increasing power, the degree of dissociation monomer was increased. With decreasing the distance from power electrode, the radicals were increased. The films prepared with low power and long distance from power electrode had good adhesion with substrate (4B) .
    In pulsed plasma, with decreasing duty- cycle (DC), the dissociation of monomer was decreased and the probability of polymerization was increased. The films prepared with lower power and lower duty-cycle at the plasma region had superhydrophobic behavior with contact angle over 150° and 239 nm of roughness surface. The double bond of C6F6 had higher polymerized to form high molecular particles in the gas phase and compared with the single bond of C6F14 plasma,.
    Finally, with increasing MMA, the adhesion of the films were slightly improved but the hydrophobic behavior of the films were decreased.

    中文摘要 i 英文摘要 ii 表目錄 vi 圖目錄 vii 第一章 前言 1-1 研究動機 01 1-2 文獻回顧 01 1-3 研究目的 03 第二章 實驗藥品與儀器設備 2-1 實驗藥品 08 2-2 儀器設備 09 2-3 超疏水薄膜材料製備 10 2-3-1 單體結構與流量校正 10 2-3-2 電漿聚合反應 14 2-4 薄膜之物理和化學性質量測 15 2-4-1 接觸角量測儀 15 2-4-2 掃描式電子顯微鏡 15 2-4-3 薄膜測厚與折射率量測儀 15 2-2-4 原子力顯微鏡 15 2-2-5 X射線光電子能譜儀 15 2-2-6 霍氏轉換紅外線光譜分析 15 2-2-7 附著性測試 15 第三章 結果與討論 3-1 連續式六氟苯電漿沉積膜材 17 3-1-1功率對連續式六氟苯電漿聚合之影響 17 3-1-2沉積位置對連續式六氟苯電漿聚合之影響 24 3-2 脈衝式六氟苯電漿沉積膜材 30 3-2-1功率對脈衝式六氟苯電漿聚合之影響 30 3-2-2沉積位置對脈衝式六氟苯電漿聚合之影響 38 3-2-3能率循環對脈衝式六氟苯電漿聚合之影響 45 3-2-4能率循環對不同氟化碳電漿聚合之影響 54 3-3 甲基丙烯酸甲酯/六氟苯電漿沉積膜材 59 3-3-1甲基丙烯酸甲酯/六氟苯電漿聚合對膜材特性之影響 59 第四章 結論 63 參考文獻 6

    1. Feng, X.J. and L. Jiang, “Design and creation of superwetting/antiwetting surfaces”, Advanced Materials, 18(23): p. 3063-3078, 2006.
    2. Takai, O., A. Hozumi, and N. Sugimoto, “Coating of transparent water-repellent thin films by plasma-enhanced CVD”, Journal of Non-Crystalline Solids, 218: p. 280-285, 1997.
    3. Hozumi, A., et al., “Preparation of transparent water-repellent films by radio-frequency plasma-enhanced chemical vapour deposition”, Journal of Materials Science, 32(16): p. 4253-4259, 1997.
    4. Vaswani, S., J. Koskinen, and D.W. Hess, “ Surface modification of paper and cellulose by plasma-assisted deposition of fluorocarbon films”, Surface & Coatings Technology, 195(2-3): p. 121-129, 2005.
    5. Hodak, S.K., et al., “ Enhancement of the hydrophobicity of silk fabrics by SF6 plasma”, Applied Surface Science, 254(15): p. 4744-4749, 2008.
    6. Hirotsu, T., et al., “Surface wetting phenomena of plasma polymer-coated sheets of poly(L-lactic acid)/poly(butylene succinate)”, Thin Solid Films, 515(9): p. 4125-4129, 2007.
    7. Il Yoon, Y., et al., “Superhydrophobicity of PHBV fibrous surface with bead-on-string structure”, Journal of Colloid and Interface Science, 320(1): p. 91-95, 2008.
    8. Hui W, D.D., Xuedong W., “Fabrication of superhydrophobic surfaces on aluminum”, Applied Surface Science, 17: p. 5599-5601, 2008.
    9. Tsuruta, S., et al., “Superhydrophobic phenomena on three-dimensional surface structures coated with plasma polymer”, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 45(10B): p. 8502-8505, 2006.
    10. Teshima, K., et al., “Ultra-water-repellent poly(ethylene terephthalate) substrates”, Langmuir, 19(25): p. 10624-10627, 2003.
    11. Elkin, B., et al., “Wettability, chemical and morphological data of hydrophobic layers by plasma polymerization on smooth substrates”, Surface & Coatings Technology, 119: p. 836-840, 1999.
    12. Teare, D.O.H., et al., “Pulsed plasma deposition of super-hydrophobic nanospheres”, Chemistry of Materials, 14(11): p. 4566-4571, 2002.
    13. Favia, P., et al., “Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges”, Surface & Coatings Technology, 169: p. 609-612, 2003.
    14. Senesi, G.S., et al., “Surface characterization of plasma deposited nano-structured fluorocarbon coatings for promoting in vitro cell growth”, Surface Science, 601(4): p. 1019-1025, 2007.
    15. Koshel, D., et al., “Characterization of CFx films plasma chemically deposited from C3F8/C2H2 precursors”, Surface & Coatings Technology, 173(2-3): p. 161-171, 2003.
    16. Hochart, F., R. De Jaeger, and J. Levalois-Grutzmacher, “Graft-polymerization of a hydrophobic monomer onto PAN textile by low-pressure plasma treatments”, Surface & Coatings Technology, 165(2): p. 201-210, 2003.
    17. Shi, D.J., T. Kaneko, and M. Akashi, “Particulation of hyperbranched aromatic biopolyesters self-organized by solvent transformation in ionic liquids”, Langmuir, 23(7): p. 3485-3488, 2007.
    18. Shen, L. and J.J. Dai, “Improvement of hydrophobic properties of silk and cotton by hexafluoropropene plasma treatment”, Applied Surface Science, 253(11): p. 5051-5055, 2007.
    19. Chen, K.S., M.R. Yang, and S.T. Hsu, “Fabrication and characterization of fluorine-containing films using plasma polymerization of octafluorotoluene ”, Materials Chemistry and Physics, 61(3): p. 214-218, 1999.
    20. Yi, J.W., Y.H. Lee, and B. Farouk, “Low dielectric fluorinated amorphous carbon thin films grown from C6F6 and Ar plasma”, Thin Solid Films, 374(1): p. 103-108, 2000.
    21. Shirafuji, T., et al., “Plasma enhanced chemical vapor deposition of thermally stable and low-dielectric-constant fluorinated amorphous carbon films using low-global-warming-potential gas C5F8. Thin Solid Films”, 374(2): p. 256-261, 2000.
    22. Yang, G.H., et al., “Plasma polymerization and deposition of linear, cyclic and aromatic fluorocarbons on (100)-oriented single crystal silicon substrates”, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 20(6): p. 1955-1963, 2002.
    23. Liu, C.H. and T.C. Wei, “The monomer inlet position effect on the fluorocarbon film deposited using RF plasma”, Journal of the Chinese Institute of Chemical Engineers, 37(2): p. 169-176, 2006.
    24. Shirafuji, T., N. Yoshiyasu, and K. Tachibana, “Plasma polymerization of fluorocarbon thin films on high temperature substrate and its application to low-k films”, Thin Solid Films, 515(9): p. 4111-4115, 2007.
    25. Shchegoleva, L.N., I.V. Beregovaya, and P.V. Schastnev, “Potential energy surface of C6F6- radical anion”, Chemical Physics Letters, 312(2-4): p. 325-332, 1999.
    26. Ingolfsson, O. and E. Illenberger, “Effective Intermolecular Relaxation in (C6f6)(N)(-)Clusters - Mechanism of C(6)F(6)(-)Formation on Low-Energy-Electron Impact”, International Journal of Mass Spectrometry, 150: p. 79-86, 1995.
    27. Friedrich, J.F., et al., “Plasma polymers with chemically defined structures in contact with metals”, Surface & Coatings Technology, 142: p. 460-467, 2001.
    28. Hochart, F., et al., “Plasma surface treatment of poly(acrylonitrile) films by fluorocarbon compounds”, Applied Surface Science, 142(1-4): p. 574-578 , 1999.
    29. Braun, A., et al., “Polymer replication of 3D microstructures employing a high content fluorine separation layer”, Applied Surface Science, 139: p. 206-211, 1999.

    QR CODE
    :::