| 研究生: |
邱忠憲 Jhong-Sian Chiu |
|---|---|
| 論文名稱: |
組成成分與溫度對生物膜彈性性質的影響 Composition and temperature effects on the elastic properties of membranes |
| 指導教授: |
李明道
Ming-Tao Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 生物物理研究所 Graduate Institute of Biophysics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 生物膜 、抗菌生態 、脂質分子 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物膜在細胞中扮演非常重要的角色,除了保護著細胞,許多由細胞膜媒
介的生物過程也維持細胞的活性,因此研究生物膜成為很重要的課題,近年來
很多學者把生物膜結構以及許多生物過程如胞吞現象、胞吐現象….等等,一一
地解謎,但仍有很多生物過程的原因及機制尚未明瞭,由於不少生物過程都有
透過生物膜的變形來完成,故我們用生物物理的方法來研究生物膜的彈性性
質,希望闡明其原因及機制。
不同細胞的生物膜有不同組成,這些組成和溫度皆對細胞的行為有重要的
影響,我們利用 X 光繞射在不同溫度中測量不同脂質混合物的結構,進一步藉
由改變滲透壓的方法得到其彈性性質,透過了解生物膜的彈性性質,可以更理
解各種重要的生物過程。
實驗結果發現不同的分子形狀會直接影響生物膜的自然曲率半徑,與
DOPE 形狀相同生物分子會使得自然曲率半徑不變,其餘與 DOPE 分子形狀不
同的生物分子會使得自然曲率半徑變大;帶電脂質使得自然曲率半徑也些微的
下降;最後蜂毒胜肽使得 DOPE 的六角型相態極為不易產生;在溫度上升時,
不同的脂質混合物的自然曲率半徑都有了些微的下降。
Biological membranes play very important role for the cell. They not only protect
the cell but also mediate the biological processes to maintain the activity of cell.
Therefore, studying biological membranes is very important. In the past decades, a lot
of membrane structure and membrane-mediated biological processes have been studied.
However, most of the mechanisms of these biological processes are still the puzzles. In
this report, we studied the elastic properties of membranes by biophysical method for
further understanding these processes.
Different types of cells have varied membrane composition of lipids. The lipid
composition and temperature are able to affect the membrane-mediated biological
processes. We used x-ray diffraction to determine the structure of membranes in
different compositions as well as different temperatures. The elastic properties of
membranes were extracted from X-ray data by changing the osmotic pressure. We
should understand the biological processes more through the determination of the
elastic properties of membranes.
Consequently, we found different molecular shapes of the additives compare to
DOPE cause the increase of intrinsic radius of curvature. The negative charged lipids
decrease the intrinsic radius of curvature slightly. Melittin hold DOPE membranes in
the lamellar phase instead of hexagonal phase. Finally, the intrinsic radii of curvature
of all lipid mixtures decrease with temperature increasing.
[1] Sylvia S. Mader著,生物學,黃皓陽譯,藝軒圖書,台北,民國八十八年。
[2] Robert T. Murry等著,哈伯氏生物化學,藝軒圖書,翁鵬傑等譯,台北,民國八十六年。
[3] Eddy M. De Robertis著,細胞分子生物學,茂昌圖書,林良平等譯,台北,民國六十九年。
[4] Giangaspero, A., et al. “Amphipathic α-helical peptides. A systematic study
of the effects of structural and physical properties on biological activity.”
Eur. J. Biochem. Vol. 268, pp. 5589 – 5600, 2001.
[5] Huang, H. W., “Action of Antimicrobial Peptides: Two-State Model.” Biochem.
Vol. 39, pp. 8347 – 8352, 2000.
[6] Kim A. Brogden, “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?” Nature Reviews Microbiology, Vol. 3, pp. 238 – 250, March 2005.
[7] Matanic, V.C.A. and V. Castilla. “Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus.” IJAA, Vol. 23, Issue 4, pp. 382 – 389, 2004.
[8] Deng, B., et al. “Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics.” J. Med. Chem. Vol. 45, pp. 663 – 669, 2002.
[9] Juliette Jouhet, “Importance of the hexagonal lipid phase in biological membrane organization” Front Plant Sci. Vol. 4: 494, 2003.
[10] Z. Chen and R. P. Rand, “The Influence of Cholesterol on Phospholipid Membrane Curvature and Bending Elasticity”, Biophys. J., Vol. 73, pp. 267 –276, 1997.
[11] D.A. Brown and E. London, “Structure and function of sphingolipid-and cholesterol-rich membrane rafts, Journal of Biological Chemistry” Biological Chemistry, Vol. 275, pp. 17221-17224, 2000.
[12] Koynova R, et al. “Transitions between lamellar and non-lamellar phases in membrane lipids and their physiological roles” OA Biochemistry, 1(1):9, Apr 01 2013.
[13] 錢偉長著,彈性力學,亞東書局,台北,民國七十六年。
[14] W. Rawicz, et al. “Effect of Chain Length and Unsaturation on Elasticity of Lipid Bilayers.” Biophys. J., Vol. 79, pp. 328 –339, 2000.
[15] K. Olbrich, et al. “Water Permeability and Mechanical Strength of Polyunsaturated Lipid Bilayers.” Biophys. J., Vol. 79, pp. 321 – 327, 2000.
[16] R. M. Epand, et al. “Role of the Position of Unsaturation on the Phase Behavior and Intrinsic Curvature of Phosphatidylethanolamines”, Biophys. J., Vol. 71, pp.1806 –1810, 1996.
[17] N. Fuller and R. P. Rand, “The Influence of Lysolipids on the Spontaneous Curvature and Bending Elasticity of Phospholipid Membranes”, Biophys. J., Vol. 81, pp.243 –254, 2001.
[18] Habermann, E. “Bee and wasp venoms.”Science 177, pp. 314 - 322 , 1972.
[19] Dempsey, C. E. “The actions of melittin on membranes.” Biochim Biophys. Acta
1031, pp. 143 – 161, 1990.
[20] Lin Yang, “Barrel-Stave Model or Toroidal Model? A Case Study on Melittin Pores”, Biophys. J., Vol. 79, pp. 328 –339, 2000.
[21] Lee, M. T., et al. “Energetics of pore formation induced by membrane active peptides.” Biochemistry, Vol. 43, pp. 3590 – 3599 ,2004.
[22] Christopher B. Stanley and Helmut H. Strey. “Measuring Osmotic Pressure of Poly(ethylene glycol) Solutions by Sedimentation Equilibrium Ultracentrifugation” . Macromolecules, Vol. 36, pp. 6888-6893, 2003.
[23] Wu , Y., et al. “X-Ray Diffraction Study of Lipid Bilayer Membranes Interacting with Amphiphilic Helical Peptides: Diphytanoyl Phosphatidylcholine with
Alamethicin at Low Concentrations.” Biophys. J., Vol. 68, pp. 2361 – 2369
, 1995.
[24] 陳方玉,黃惠文,「以 X 光多片層繞射研究生物薄膜」,科儀新知,18 卷,六期, pp. 22 – 26, 1997.
[25] S. Leikin et al. “Measured Effects of Diacylglycerol on Structural and Elastic Properties of Phospholipid Membranes.” Biophysical J. Vol. 71, pp. 2623 – 2632, November 1996.
[26] Rand, R. P. et al. “Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress.” Biochemistry. Vol. 29, pp. 76 – 87, 1990.
[27] Helfrich, W. “Elastic properties of lipid bilayers: theory and possible experiments.” Z. Naturforsch.28C: pp. 693–703, 1973
[28] Richard M. Epand. “High sensitivity differential scanning calorimetry of the bilayer to hexagonal phase transitions of diacylphosphatidylethanolamines” Chemistry and Physics of Lipids. Vol. 36, pp. 387-393, March 1985
[29] G. L. Kirk and S. M. Gruner. “Lyotropic effects of alkanes and headgroup composition on the L03B1 -HII lipid liquid crystal phase transition: hydrocarbon packing versus intrinsic curvature” J. Physique, Vol. 46, pp. 761-769, 1985.
[30] Ming-Tao Lee. et al. “Many-Body Effect of Antimicrobial Peptides: On the Correlation Between Lipid’s Spontaneous Curvature and Pore Formation” Biophysical Journal, Vol. 89, pp. 4006–4016, December 2005.
[31] Terwilliger, T. C. et al.” The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities.”Biophys. J., Vol. 37, pp. 353–361, 1982.
[32] GCShearman et al. .” Inverse lyotropic phases of lipids and membrane
curvature” J.Phys. , Vol. 18, pp.S1105–S1124, 2006.