| 研究生: |
陳炳宏 Bing-hung Chen |
|---|---|
| 論文名稱: |
應用於SATA-III之6 Gbps半速率時脈與資料回復電路 Design and Implementation of 6 Gbps Half-Rate Clock and Data Recovery Circuit for SATA-III Application |
| 指導教授: |
鄭國興
Kuo-hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 混和訊號 、鎖相迴路 、時脈與資料回復電路 |
| 外文關鍵詞: | mixed-signal, phase lock loop, clock and data recovery |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來製程演進使得處理器及記憶體等運算單元及儲存元件之間的溝通量越來越大,傳統匯流排已不敷使用,因此高頻寬之收發器逐漸成為下一世代主流。高速傳輸技術的應用從光纖通訊發展到電腦通用I/O介面,經由電纜或匯流排作為傳輸媒介的高速串列介面。本論文之設計主要針對串列有線傳輸系統中的Serial-ATA III接收端規格為設計藍圖,採用雙迴路相位選擇式架構,利用半速率取樣方式實現時脈與資料回復電路。
本論文所設計實現的時脈與資料回復電路應用於6 Gbps的串列傳輸系統,輸出為二組3 Gbps並列資料。其中雙迴路相位選擇式架構分別由多相位時脈倍頻器與資料回復迴路所組成。其主要優勢在於二個獨立迴路,可以解決單一迴路中抖動轉移函數與抖動容忍度的頻寬互相衝突的問題。在資料回復迴路中,利用改良後的資料延遲視窗及取樣式相位偵測器取代傳統的半速率相位偵測單元,可降低對稱佈局走線難度和電路消耗功率;另外,資料追鎖頻寬以Serial-ATA III中的規格為基底,並加入頻寬可調機制,使迴路頻寬擁有較大的資料追鎖範圍。
在半速率取樣時脈與資料回復電路實現上,採用TSMC 0.13 μm 1P8M CMOS製程,供應電源為1.2 V,取樣速率為3 Gsps,經模擬驗證輸出回復時脈抖動為8.31 ps,並列輸出的回復資料抖動均小於16.3 ps。
According to process evolution, the volume of the data transferring between processor and memory cells is larger and larger. This progress making the conventional data bus can not deal with such huge rate. Hence, wide bandwidth transmitter and receiver become the trend of the next generation. The SERDES technology adopts cable or data bus as high speed serial interface. It applies from fiber communication to general computer interface.
The clock and data recovery circuit designed in this thesis applies to 6 Gbps serial link system. The output of recovery data are two sets of 3 Gbps data stream in parallel. The dual loop phase selecting structure is composed of multi-phase phase lock loop and data recovery loop. The advantage of this architecture is that two loops are independent in each other. It can solve the conflict between jitter transfer function and jitter tolerance in single loop. In data recovery loop, it utilizes improved data delay window and sampling phase detector to replace conventional half-rate phase detector. It can simplify the difficulty in symmetrical layout and decrease the power consumption. Otherwise, the data tracking bandwidth is based on Serial-ATA III specification, and it equips with the function of tunable tracking bandwidth. Thus, the clock and data recovery circuit has larger data tracking range.
In implementation of half-rate clock and data recovery circuit, it utilizes TSMC 0.13 μm 1P8M CMOS process. The power supply is 1.2 V and sampling rate is 3 Gbps. The peak to peak jitter of recovery clock is 8.31 ps, and the recovery data jitter is less than 16.3 ps by simulation verification.
[1] PCI Express™ Base Specification , Gen2 Rev 0.3, Jul. 27, 2005.
[2] Serial ATA Workgroup “SATA: High speed Serialized AT Attachment,” Revision 2.6, Feb. 2006.
[3] Agilent Technologies “Jitter Fundamental & Measurement Technology,”.
[4] M. Aoyama, K. Ogasawara, and M. Sugawara “3Gbps, 5000ppm spread spectrum SerDes PHY with frequency tracking phase interpolator for Serial ATA,” IEEE Symp. on VLSl Circuits Digest of Technical Papers 8-4, pp. 107-110, Jun. 2003.
[5] C. Emmerich “Introduction to Jitter,” Product Marketing Engineer, Wavecrest, Oct. 2001.
[6] Understanding Jitter, WAVECREST Corporation, 2001.
[7] Agilent Technologies “Measuring Jitter in Digital Systems ,” Application Note 1448-1.
[8] J. Savoj and B. Razavi, “A 10-Gb/s CMOS clock and data recovery circuit with a half-rate linear phase detector,” IEEE J. of Solid-State Circuits, vol. 36, no. 5, pp. 761-767, May 2001.
[9] B. Razavi, “Design of Integrated Circuit for Optical Communications,” McGraw-Hill Inc., International Edition, 2003.
[10] T. H. Lee and J. F. Bulzacchelli, “A 155-MHz clock recovery delay- and phase-locked loop,” IEEE J. of Solid-State Circuits, vol. 27, no. 12, pp. 1736-1746, Dec. 1992.
[11] X. Maillard, F. Devisch, and M. Kuijk, “A 900-Mb/s CMOS data recovery DLL using half-frequency clock,” IEEE J. of Solid-State Circuits, vol. 37, no. 6, pp. 711-715, Jun. 2002.
[12] J. Kim and D.-K. Jeong, “Multi-gigabit-rate clock and data recovery based on blind oversapmling,” IEEE Communications Magazine, vol. 41, pp. 68-74, Dec. 2003.
[13] M. Banu and A. Dunlop, “A 660Mb/s CMOS clock recovery circuit with instantaneous locking for NRZ data and burst-mode transmission,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 1993, pp. 102-103.
[14] P. Larsson, “A 2-1600 MHz CMOS clock recovery PLL with low-Vdd capability,” IEEE J. of Solid-State Circuits, vol. 34, no. 12, pp. 1951-1960, Dec. 1999.
[15] M. Nogawa, K. Nishimura, S. Kimura, and T. Yoshida, et al. “A 10-Gb/s burst-mode CDR IC in 0.13μm CMOS,” in Proc. IEEE Int. Solid-State Circuits Conf., vol. 1, Feb. 2005, pp. 228-229.
[16] R. E. Best, “Phase-Locked Loops: Design, Simulation and Applications,” New York: McGraw-Hill, Fourth Ed., 1999.
[17] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. of Solid-State Circuit, vol. 31, no. 3, pp. 331-343, Mar. 1996.
[18] C.–H. Park et al.,”A low-noise, 900MHz VCO in 0.6μm CMOS,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 586-591, May 1999.
[19] S.–J. Lee et al., ”A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme,” IEEE J. of Solid-State Circuits, vol. 32, no. 2, pp. 289-291, Feb.1997.
[20] M. M. Green and U. Singh, “Design of CMOS CML circuits for high-speed broadband communications,” in Proc. IEEE Int. Symp. Circuits and System, vol. 2, May 2003, pp. 204-207.
[21] Y. Miki, T. Saito, and H. Yamashita, et al. “A 50-mW/ch 2.5-Gb/s/ch data recovery circuit for the SFI-5 interface with digital eye-tracking,” IEEE J. of Solid-State Circuits, vol. 39, no. 4, pp. 613-621, Apr. 2004.
[22] J. Lee, K. S. Kundert, and B. Razavi, “Analisis and modeling of bang-bang clock and data recovery circuits,“ IEEE J. of Solid-State Circuits, vol. 39, pp. 1571-1580, Sep. 2004.
[23] G. M. Yin, F. O. Eynde, and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE J. of Solid-State Circuits, vol. 27, no. 2, pp. 208-211, Feb. 1992.
[24] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop,” IEEE J. of Solid-State Circuits, vol. 32, no. 11, pp. 1683-1692, Nov. 1997.
[25] M. M. Green, “CMOS design techniques for 10 Gb/s optical transceivers,” IEEE Symp. on VLSl Circuits, pp. 209-212, May 2003.
[26] R. Kreienkamp, U. Langmann, and C. Zimmermann, et al. “A 10-Gb/s CMOS clock and data recovery circuit with an analog phase interpolator,” IEEE J. of Solid-State Circuits, vol. 40, no. 3, pp. 736-743, Mar. 2005.
[27] M. Y. He and J. Poulton, “A CMOS mixed-signal clock and data recovery circuit for OIF CEI-6G+ backplane transceiver,” IEEE J. of Solid-State Circuits, vol. 41, no. 3, pp. 597-606, Mar. 2006.
[28] P. K. Hanumol, G. Y. Wei, and U. K. Moon, “A wide-tracking range clock and data recovery circuit,” IEEE J. of Solid-State Circuits, vol. 43, no. 2, pp. 425-439, Feb. 2008.
[29] Y.-S. Seo, J.-W. Lee, H.-J.g Kim, C. Yoo, J.-J. Lee, and C.-S. Jeong, “A 5-Gbit/s clock and data recovery circuit with 1/8-rate linear phase detector in 0.18μm CMOS technology,” IEEE Trans. on Circuits and Systems II, vol. 56, pp. 6-10, Jan. 2009
[30] Y. Amamiya, S. Kaeriyama, H. Noguchi, Z. Yamazaki, T. Yamase, K. Hosoya, M. Okamoto, S. Tomari, H. Yamaguchi, H. Shoda, H. Ikeda, S. Tanaka, T. Takahashi, R. Ohhira, A. Noda, K. Hijioka, A. Tanabe, S. Fujita, and N. Kawahara, “A 40Gb/s multi-data-rate CMOS transceiver chipset with SFI-5 interface for optical transmission systems,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 358-359, 359a.
[31] Anritsu “Ultra-Wideband Bias Tees Models K251 and V251,” Revision A, Jun. 2000.