| 研究生: |
陳宏亮 Hong-Liang Chen |
|---|---|
| 論文名稱: |
整合製程能力指數之一維組裝公差分析與配置方法探討 On the study of one-dimensional tolerance analysis and allocation integrating with process capability indices |
| 指導教授: |
賴景義
Jiing-Yih Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 製程能力指數 、公差分析 、公差配置 、成本函式 、田口式品質損失函式 、基因演算法 |
| 外文關鍵詞: | tolerance analysis, tole, Process capability index |
| 相關次數: | 點閱:23 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
普遍的公差分析與公差配置鮮少將製程能力指數納為參考項目,因此本研究將製程能力指數作為統計模式與蒙地卡羅模式的分析參數,設計者能獲得較符合實際製程之公差分析結果。本研究的公差配置同樣參考製程能力指數配置組成環之製造公差,依照公差設計前、後期,配置的方法分為一般配置與最佳化配置兩種;當在公差設計前期時,根據組成環的公稱尺寸與製造公差,使用一般配置重新配置組成環的製造公差;當在公差設計後期時,設計者已經累計些許製造成本相關的數據,便可利用成本函式以及田口式品質損失函式建立該組裝的最低製造費用之目標函式,並以基因演算法求解該目標函式,獲得該組裝的最低製造費用之組成環製造公差。
General tolerance analysis and tolerance allocation methods seldom make process capability index being reference conditions, therefore this research make process capability index being analysis parameter for statistics model and mote cole model, the designer can obtain tolerance analysis result correspond to reality process. This research tolerance allocation also refer process capability index to allocate the manufacturing tolerance of component links, then tolerance alloction classify general allocation and the optimum allocation from the earlier period and later period of the tolerance design. When the earlier period of tolerance design, using general allocation allocate the manufacturing tolerance of component links from the manufacturing tolerance and the nominal of component links; when the later period of tolerance design, the designer have already accumulated the cost data, then using cost-tolerance function and Taguchi quality loss function find the minimum cost function, finally sloving the minimum cost function by genetic algorithm obtain the manufacturing tolerance of component links for minimum cost.
[1] 謝豪峰, 一維組裝公差模擬軟體發展, 中央大學機械工程研究所碩士論文, 2006.
[2] C. Zhang, J. Luo and B. Wang, ” Statistical tolerance synthesis using distribution function zones”, International Journal of Production Research, Vol. 37, No.17, pp. 3995-4006, 1999.
[3] A. Shan, R. N. Roth and R. J. Wilson, ”A new approach to statistical geometrical tolerance analysis”, The International Journal of Advanced Manufacturing Technology , Vol. 15, pp. 220-230, 1999.
[4] D. Xu, J. Bao and Y. Jin, “Tolerance analysis & tolerance optimization of complex diesel engine key structures”, Computer Integrated Manufacturing Systems, Vol. 12, No. 5, pp. 721-726, 2006.
[5] J. Zhang, Y. Huang, G. Huang and C. Chen, ”The monte-carlo method for solving the dimensional chain positive problem”, Journal of Materials Processing Technology, Vol 103 , pp. 189-193, 2000.
[6] 黃家毅, 螺桿壓縮機組裝公差模擬分析, 中央大學機械工程研究所碩士論文, 2006.
[7] K. W. Chase and K. H. Greenwood, ”Design issues in mechanical tolerance analysis”, ASME Reprinted from Manufacturing Review, Vol. 1, No. 1, pp. 50-59, 1988.
[8] K. W. Chase and G. L. Bruce, ”Least cost tolerance allocation for mmechanical assemblies with automated process selection”, Manufacturing Review, Vol. 3, No. 1, pp. 49-59, 1990.
[9] K. W. Chase, ”Minimum-cost tolerance allocation”, Department of Mechanical Engineering Brigham Young University, 1999.
[10] K. W. Chase, “Tolerance allocation methods for designers”, Department of Mechanical Engineering Brigham Young University, 1999.
[11] Y. Wang, W. Zhai, W. Wu and Y. Ma, ”Toloerance-robusness optimization design ” , Computer Integrated Manufacturing Systems, Vol. 13, No. 11, pp. 2081-2085, 2007.
[12] Y. Zeng, ”Tolerance design optimization”, Journal of Shanghai University of Engineering Science, Vol. 21, No. 4, pp. 338-341, 2007.
[13] H. Peng, X. Jiang, Z. Xu and X. Liu, “Optimal tolerance design based on the quality loss function with multi-correlated characteristics”, Journal of the Chinese Society of Mechanical Engineers, Vo1. 19, No. 5, pp. 590-594, 2008.
[14] Y. Ling, S. Ji, Y. Ma and H. Cai, ”A new design method of tolerance allocation”, Computer Integrated Manufacturing Systems, Vol. 6, No. 1, pp. 85-91, 2000.
[15] Y. Fu, P. Jiang and D. Lui, “Optimization approach for multi-process dimension and its tolerance” , Computer Integrated Manufacturing Systems, Vol. 15, No. 1, pp. 142-146, 2009.
[16] B. Kuang, M. Huang and Y. Zhong, “Optimal tolerance allocation for composite dimensional and geometric tolerances”, Computer Integrated Manufacturing Systems, Vol. 14, No. 2, pp. 398-402, 2008.
[17] 李國城, 統計製程管制軟體發展, 中央大學機械工程研究所碩士論文, 2004.
[18] K. Rezaie, M. R. Taghizadeh and B. Ostadi, “A practical implementation of the process capability indices”, Journal of Applied Science, Vol. 6, No. 5, pp. 1182-1185, 2006.
[19] K. S. Chen and W. L. Pearn , “Capability indices for processes with asymmetric tolerances”, Journal of the Chinese Institute of Engineers, Vol. 24, No. 5, pp. 559-568, 2001.
[20] K. S. Chen and W. L. Pearn, “An application of non-normal process capability indices,” Quality and Reliability Engineering International, Vol. 13, pp.353-360, 1997.
[21] K. Vännman, “A general class of capability indices in the case of asymmetric tolerances”, Communications in Statistics-Theory and Methods, Vol. 26, No. 8, pp. 2049-2072, 1997.
[22] C. Lin, W. Huang, M. Jeng and J. Doog, “Study of an assembly tolerance allocation model based on monte carlo simulation”, Journal of Materials Processing Technology, Vol. 70, No. 1, pp. 9-16, 1997.
[23] G. E. P. Box and M. E. Muller, “A note on the generation of random normal deviates”, The Annals of Mathematical Statistics, Vol. 29, No. 2, pp. 610-611, 1958.
[24] B. Joan, "Inferring sequences produced by pseudo-random number generators". Journal of the ACM, Vol. 36, No. 1, pp. 129-141, 1989.
[25] A. M. Law and W. D. Kelton, “Simulation modeling and analysis”, New York McGraw-Hill, 1982.
[26] T. W. Anderson and D. A. Darling, ”Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes”, Journal of the American Statistical Association , Vol. 49, pp. 765-769, 1954.
[27] T. Liu and J. Zheng, “Monte carlo simulation in the nonconformance-based tolerance analysis of a mechanical assembly”, Journal of Science and Engineering Technology, Vol. 2, No. 4, pp. 67-82, 2006.
[28] F. H. Speckhart, “Calculation of tolerance based on a minimum cost approach”, ASME Journal of Engineering for Industry, Vo1. 94, No. 2, pp. 447-453, 1972.
[29] G. H. Sutherland and B. Roth, “Mechanism design:accouting for manufacturing tolerances and costs in function generating problems”, Journal of Engineering for Industry , Vol. 97, No. 1, pp. 283-286, 1975.
[30] W. Michael and J. N. Siddall, “Optimization problem with tolerance assignment and full acceptance”, ASME Journal of Mechanical Design, Vol. 103, pp. 842-848, 1981.
[31] Z. Dong and A. Soon, “Automatic optimal tolerance design for related dimension chains”, ASME Manufacturing Review, Vol. 3, No. 4, pp. 262-271, 1990.
[32] Z. Dong and W. Hu, “Optimal process sequence identification and optimal process tolerance assignment in computer-aided process planning”, Computer in Industry, Vol. 17, pp. 19-32, 1991.
[33] Z. Dong, W. Hu and D. Xue, “New production cost-tolerance models for tolerance synthesis”, Journal of Egineering for Industry, Vol. 116, No. 22, pp. 199-206, 1994.
[34] 陳璟錞, 組裝模擬與公差配置設計研究, 中央大學機械工程研究所碩士論文, 2003.
[35] 劉勇, 康立山, 陳毓屏, 非數值並行算法(第二冊), 科學出版社, 1995.
[36] G. F. Hadley, "Nonlinear and dynamic programming", Addison-Wesley, 1964.