| 研究生: |
陳義昇 Yi-Sheng Chen |
|---|---|
| 論文名稱: |
CFSBR厭氧相/沉澱相/排水相/排泥相 Improvement of an Automation System in Anaerobic Settle and Draw Phases in CFSBRs |
| 指導教授: |
廖述良
Shu-Liang Liaw |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 污泥沉降性 、氧化還原電位(ORP) 、自動監控系統 、連續流循序批分式活性污泥系統 |
| 外文關鍵詞: | real-time control, Continuous -flow Sequencing Batch Reactor (CFSB, automation |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
連續流循序批分式活性污泥系統(Continuous-Flow Sequencing Batch Reactor, CFSBR)在自動監測控制系統之發展上,主要係利用ORP與pH監測參數發生之折點變化,作為即時監控系統操作程序之反應操作終點之依據。然而過去之厭氧相控制策略,乃採取一固定操作時間之操作方式,並無利用系統監測參數作為轉相之判斷,此法易造成系統效率與效益之降低。本研究為使CFSBR系統所有操作程序皆能達線上自動化操控之目的,故擬以pH與ORP反應特徵點,建立厭氧相即時控制策略,並進一步修正沉澱/排水/排泥相控制策略,且在馴養之初即以此線上自動控制策略進行操作。由研究結果指出,以即時控制方式進行馴養將得到與定時控制方式相似之除碳與除磷成效與放流水水質;但利用ORP轉相特徵點進行反應終點之判斷,易造成反應槽中氨氮濃度累積,使系統達到氨氮放流水水質標準之時間較固定操作方式為長。另一方面,觀察系統厭氧相釋磷速率與pH、ORP反應曲線發現,於釋磷速率反曲點,pH曲線之反應終點特徵較ORP曲線為早,而由此pH反應終點特徵作為厭氧轉相之判斷,在不影響處理水水質下,將能進一步節省厭氧相操作時間,達更佳之處理效益。而由ORP下降量與比釋磷量之分析結果發現,兩者具有相當高之相關性。利用兩者之關係式,可直接以ORP下降量,求得系統釋磷量,而藉由訂定適當之比釋磷量達成值,則可作為厭氧相終點控制之另一判斷依據。
The continuous-flow sequencing batch reactor (CFSBR) is capable of removing the organic carbonaceous materials, biological nutrients such as nitrogen and phosphorus by cycling anaerobic, aerobic, anoxic, settling and discharge phases. Development at automatically monitoring & controllable system , the optimal procedure of most phases were usually executed by the pH/ORP real-time control approaches. Therefore, this study tries to set up the method for on–line measuring anaerobic phase break–point judged by ORP and pH trend-characteristic value. However, according to the experiment result, using the pH trend-characteristic value to judge anaerobic phase break-point would need less time than using the ORP trend-characteristic value. In addition, the ORP subtract value have a very high correlation with Specific liberation phosphorus. Using this equation could calculate the liberation phosphorus from on-line ORP detector. And according to this equation and concluding a suitable liberation phosphorus value could provide an additional judgment of anaerobic phase terminal point.
1. A Mosquare-Corral, J. L. Campos, M. Sanchez, R. Mendez; and J. M. Lema, Combined system for biological removal of Nitrogen and Carbon from a fish cannery wastewater. Journal of Environmental Engineering, September 2003.
2. Al-Ghusian I. A., Huang J. Hao O. J. and Lim B. S., Using pH as a Real-time Control Parameter for Wastewater Treatment and Sludge Digestion Process. Wat. Sci. Tech., 30, 4, 159-168, (1994).
3. Burbank N. P. Jr. ORP-A Tool for Process Controll. Process Isl. An. Conf. On Avt. Sludge Conf. Arthn Tech. Wisc., 65-79, 1981.
4. Erik, D., Biological and Chemical Systems for Nutrient Removal. Water Environment Federation, Water Environment Federation. ISBN: 1-57278-123-8, (1998).
5. Groeneweg J., Sellner B. and Tappe W., Ammonia Oxidation in Nitrosomonas at NH3 Concentration near Km: Effects of pH and Temperature. Wat. Res., 29, 12, 2561-2566. , (1994).
6. Heduit A. and Thevenot D. R., Relation Between Redox Potential and Oxygen Levels in Activated Sludge Reactors. Wat. Sci. Tech., Brighton, 21, 947-956, (1989).
7. Hood J. W., Measurement and Control of Sewage Treatment Process Efficiency by Oxidation-Reduction Potential. Sewage Works Journal, 22, 4, 640-653, (1948).
8. J. Charpentier, H. Godart, G. Martin and Y. Mogmo,Oxidation Reduction Potention(ORP) Regulation AS a WAY to Optimize Aeration and C, N and P Removal:Experimental Basis and Various Full-Scale Example,Wat. Sci. Tech., Vol.21, 1209-1223, (1989).
9. Jenkins C. J. and Mavinic D. S., Anoxic-Aerobic Digestion of Wastewater Activated Sludge: part II—Supernatant Characterics, ORP Monitoring Results and Overall Rating System. Environmental Technology Letters., 10,371-384, (1989).
10. Menardiere P. H., Roland D. D. and William H. P. , Transformation of Selenium as Affected by Sediment Oxidation Reduction Potential and pH. Env. Sci. Tech., 24, 1, 91-96, (1991).
11. Metcalf and Eddy ., Wastewater Engineering-Treatment, Disposal, Reuse. 3rd edition, McGraw-Hill International Editions. , (1991).
12. Peddie C. C., Mavinic D. S. and Jenkins C. J., Using of ORP for Monitoring and Control of Aerobic Sludge Digestion. J. Envi. Eng., 116, 3, 461-471, (1990).
13. Sasaki K., Yamamoto Y., Hatsumeta K. T. S. and Tatewaki M., Simultaneous Removal of Nitrogen and Phosphorus in Intermittently Aerated 2-Tank Activated Sludge Process Using DO and ORP-Bending Point Control. Wat. Sci. Tech., 28, 11-12, 513-521, (1993).
14. Schon G., Geywitz S and Mertens F., Influence of Dissolved Oxygen and Oxidation Reduction Potential on Phosphate Release and Uptake by Activated Sludge from Sewage Plants with Enhance Biological Phosphorus Removal. Wat. Res., 27, 3, 349-354, (1993).
15. Smolders G. J. F., Loosdrecht M. C. M. and Heijnen J. J., pH: Key factor in the Biological Phosphorus Removal Process. Wat. Sci. Tech., 29, 7, 71-74, (1994).
16. Wareham, D. G., Mavinic D. S. and Kenneth J. H., Sludge Digestion Using ORP-Regulated Aerobic-Anoxic Cycles. Wat. Res., 28, 2, 373-384, (1993).
17. 朱校興,以攝養率糧測AO程序異營/硝化族群質量及動力參數之研究,朝陽科技大學環境工程與管理所碩士論文,2004。
18. 何宗安,硫酸鹽對批次厭氧好氧生物處理法之影響,國立雲林科技大學環境與安全衛生工程研究所,碩士論文,2002。
19. 卓伯全,連續流循序批分式活性污泥系統好氧相即時控制策略之發展-低溶氧生物脫氮除磷程序控制技術之研究,國立中央大學環境工程研究所博士論文,2003。
20. 洪勝男,「城市污水生物脫氮除磷技術研討會」,國立中興大學環境工程研究所,1995。
21. 孫政遠,連續流循序批分式活性污泥系統自動控制策略發展與系統建置-線上污泥沉降性監測方法之建立,國立中央大學環境工程研究所碩士論文,2004。NSC 92-2211-E-008-027
22. 高綺霙,連續流SBR廢水處理系統於自動即時監控下氮去除動力特性之研究,國立中央大學環境工程研究所碩士論文,1997。
23. 曾四恭,生物處理法去除養豬廢水中氮之研究(上),飼料營養雜誌九二年第十期,第84 ~ 92頁。
24. 張維欽,生物除磷系統廢棄污泥以陽離子性高分子聚合物/FeCl3雙重調理之研究,台灣環境資源永續發展協會研討會論文集,2004。
25. 黃政賢,水處理工程,曉園出版社,1992。
26. 黃雅琪,低磷負荷厭氧選種系統pH、溫度效應與菌群結構之研究,國立雲林科技大學環境與安全衛生工程研究所,碩士論文,2002。
27. 葉旗福,淺談pH計,環檢所雙月刊第47期,南台灣公司,2003。
28. 歐陽嶠暉,下水道工程學,增改訂三版,長松文化公司,2001。
29. 羅家麒,連續流循序批分式活性污泥好氧相曝氣控制策略之研究—線上即時監測系統攝氧率方法建置及其攝氧行為之研究,2004。NSC 92-2211-E-008-027