| 研究生: |
黃愈掄 Yu-Lun Huang |
|---|---|
| 論文名稱: |
Shewanella oneidensis 厭氧狀態下針對吸附於非鐵礦物之二價汞的胞外還原作用 Extracellular reduction of Hg(II) adsorbed onto non-ferrous minerals by Shewanella oneidensis under anaerobic conditions |
| 指導教授: |
林居慶
Chu-Ching Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 鐵還原菌 、胞外電子傳遞 、吸附汞還原 、氧化鋁礦 、矽酸鹽礦 |
| 外文關鍵詞: | iron-reducing bacteria, extracellular eletron transfer, sorbed-Hg(II) reduction, γ-Al2O3, montmorillonite |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過往的文獻已記載鐵還原菌可左右汞於厭氧含水層的移動性而造成地下水汞污染事件,但鐵環原菌與低濃度汞之間的互動機制卻仍未清楚。針對此議題,實驗室過去幾年在利用Shewanella oneidensis MR-1作為鐵還原模式菌株探究後發現:1) 在無鐵礦的條件下,Shewanella可利用外膜電子輸送蛋白以及不論是自身分泌或是環境現成的電子穿梭物質,將溶解態的二價汞於胞外還原成元素汞;2) 當鐵礦作為唯一的終端電子受體時,因Shewanella的呼吸作用所生成的吸附型與特定晶格型的亞鐵具有卓越的還原能力,足以使預吸附於鐵礦的二價汞迅速轉化成零價汞,進而增加汞的移動性。然而這些結果尚無法得知該菌對於普遍存在於非鐵礦物表面的二價汞,是否在無亞鐵的協助下依舊得以有效還原該形態的二價汞。有鑑於此,本研究試著模擬在天然含水層環境可預見的吸附於地殼成分含量最多的氧化鋁礦(γ-Al2O3)與矽酸鹽礦(montmorillonite)表層的二價汞的條件下,探討此二價汞“能否”、以及“如何”被Shewanella還原。實驗除使用野生型MR-1外,也包括將調控黃素類物質排出蛋白基因剔除後的變種株Δbfe,和將調控外膜表面多血紅素細胞色素蛋白基因剔除後的變種株ΔmtrC/omcA。實驗結果的確發現吸附在這些礦物上的二價汞可因Shewanella的胞外呼吸作用而還原:從ΔmtrC/omcA的實驗得知MtrC/OmcA蛋白參與胞外電子傳遞的重要性,因移除MtrC/OmcA蛋白的ΔmtrC/omcA不僅失去直接接觸的還原途徑,也失去活化黃素物質的能力,使得該變種菌株無法有效將礦物表面的二價汞還原;從Δbfe的實驗發現該變種依然具有還原吸附汞的能力,表明Shewanella可能主要是藉由直接接觸的方式將該汞還原。至於實驗過程中彼此表面電性相斥的礦物與菌株究竟是如何抵抗靜電斥力、最終靠著直接接觸的方式將汞還原,本研究推論可能是因菌株於異質環境中生成胞外聚合物質(EPS)所致,因EPS不僅具有保護與黏附的功能,且其成分含有多血紅素細胞色素蛋白與黃素類化合物等物質,故可使菌株黏附在礦物上,並讓Δbfe在無黃素物質的協助下,藉由多血紅素細胞色素蛋白以電子躍遷的方式將吸附於礦物上的汞還原。此外,本研究也發現相較於黏土(montmorillonite),鋁礦不易導電的性質使得鋁礦系統中的二價汞被還原的程度不如黏土系統,意味著不同礦物似乎會影響著胞外電子的二價汞還原力。整體而言,本研究透過實驗進一步了解汞在異質環境中的生地化傳輸與轉化機制,並從結果推論在異質與均質系統中的Shewanella胞外呼吸作用有著不同的使用策略,且會受到環境介質的影響。
Previous literatures have documented that iron-reducing bacteria can control the mobility of mercury in anaerobic aquifers and cause mercury contamination events in groundwater, but the interaction mechanism between iron-reducing bacteria and low-concentration mercury is still unclear. In response to this issue, the laboratory has used Shewanella oneidensis MR-1 as an iron-reducing model strain in the past few years and found that: (1) In the absence of iron mineral, bacteria such as Shewanella can use the outer membrane electron transport protein and whether or not self-secreted or ready-made electron shuttle substance that reduces dissolved Hg(II) to Hg(0) outside the cell; (2) When Shewanella respires iron mineral as the sole electron acceptor, adsorbed ferrous and specific crystal ferrous both have excellent reducing ability will be generated, which can rapidly reduce Hg(II) that adsorbed on iron mineral to Hg(0), thereby increasing the mobility of mercury. Even so, these results still do not know whether the bacteria can effectively reduce Hg(II) in this general form without the assistance of ferrous. In view of this, this study attempts to simulate the condition of Hg(II) adsorbed on the surface of alumina (γ-Al2O3) and clay (montmorillonite) which are predictable in the natural aquifer environment, and to explore whether Shewanella can reduce Hg(II) in this form and how to occur. In addition to using wild-type MR-1, the experiment also included strain Δbfe that deleted the gene of flavin substances transport protein, and strain ΔmtrC/omcA that deleted the gene of the polyheme cytochrome protein on the outer membrane surface. This study results indeed found that Hg(II) adsorbed on these minerals could be reduced by extracellular respiration of Shewanella: from the experiment of ΔmtrC/omcA, the importance of MtrC/OmcA involved in extracellular electron transfer was known, because the removal of MtrC/OmcA. The strain ΔmtrC/omcA not only loses the reduction pathway of direct contact, but also loses the ability to activate flavin substances, so that this mutant can not effectively reduce Hg(II) on the mineral surface; from the experiment of Δbfe, it is found that this mutant still has the ability to reduce Hg(II) on the mineral surface, indicating that Shewanella may reduce Hg(II) by direct contact. As for how the minerals and strains that have negative charge on the surface of each other resist the electrostatic repulsion, and finally reduce Hg(II) by direct contact during the experiment, this study assumes that bacteria may generate extracellular polymeric substances (EPS) in a heterogeneous environment. EPS not only has the functions of protection and adhesion, but also contains many heme cytochrome proteins and flavin substances, which can make the strain adhere to minerals, and make Δbfe reduce Hg(II) by electron hopping through the heme cytochrome protein in the absent of flavin substances. In addition to compare with clay (montmorillonite), this study also found that the low conductivity of alumina makes the reduction of Hg(II) in the alumina system inferior to that in the clay system, which means different minerals seem to affect the ability of extracellular electron to reduce Hg(II). Overall, this study further understands the biogeochemical transport and transformation mechanism of mercury in heterogeneous environments through these experiments. And from the results, it is inferred that extracellular respiration of Shewanella in heterogeneous and homogeneous systems has different utilizing strategies and is affected by environmental media.
1. L, J.; Szabo, Z.; A, P., Occurrence and Mobility of Mercury in Groundwater. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability, 2013.
2. Lee, S.; Kim, D. H.; Kim, K. W., The enhancement and inhibition of mercury reduction by natural organic matter in the presence of Shewanella oneidensis MR-1. Chemosphere 2018, 194, 515-522.
3. Wiatrowski, H. A.; Ward, P. M.; Barkay, T., Novel Reduction of Mercury(II) by Mercury-Sensitive Dissimilatory Metal Reducing Bacteria. Environmental Science & Technology 2006, 40, (21), 6690-6696.
4. Bernhoft, R. A., Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012, 2012, 460508.
5. Boening, D. W., Ecological effects, transport, and fate of mercury: a general review. Chemosphere 2000, 40, (12), 1335-1351.
6. Clarkson, T. W., The toxicology of mercury. Crit Rev Clin Lab Sci 1997, 34, (4), 369-403.
7. Clarkson, T. W., The three modern faces of mercury. Environmental Health Perspectives 2002, 110, (suppl 1), 11-23.
8. Grassi, S.; Netti, R., Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany — Italy). Journal of Hydrology 2000, 237, (3-4), 198-211.
9. Barringer, J. L.; Szabo, Z., Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain. Water, Air, and Soil Pollution 2006, 175, (1-4), 193-221.
10. Chapelle, F. H.; Bradley, P. M.; Thomas, M. A.; McMahon, P. B., Distinguishing iron-reducing from sulfate-reducing conditions. Ground Water 2009, 47, (2), 300-5.
11. Ling, Y. C.; Bush, R.; Grice, K.; Tulipani, S.; Berwick, L.; Moreau, J. W., Distribution of iron- and sulfate-reducing bacteria across a coastal acid sulfate soil (CASS) environment: implications for passive bioremediation by tidal inundation. Front Microbiol 2015, 6, 624.
12. Meier, J.; Babenzien, H.-D.; Wendt-Potthoff, K., Microbial cycling of iron and sulfur in sediments of acidic and pH-neutral mining lakes in Lusatia (Brandenburg, Germany). Biogeochemistry 2004, 67, (2), 135-156.
13. Ohba, H.; Owa, N., Vertical Distribution of Physico-Chemical Properties and Number of Sulfur-Oxidizing Bacteria in the Buried Layer of Soil Profiles with Marine-Reduced Sulfur Compounds. Soil Science and Plant Nutrition 2005, 51, (3), 379-388.
14. Lovley, D. R.; Ueki, T.; Zhang, T.; Malvankar, N. S.; Shrestha, P. M.; Flanagan, K. A.; Aklujkar, M.; Butler, J. E.; Giloteaux, L.; Rotaru, A. E.; Holmes, D. E.; Franks, A. E.; Orellana, R.; Risso, C.; Nevin, K. P., Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 2011, 59, 1-100.
15. Hau, H. H.; Gralnick, J. A., Ecology and biotechnology of the genus Shewanella. Annu Rev Microbiol 2007, 61, 237-58.
16. Bird, L. J.; Bonnefoy, V.; Newman, D. K., Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 2011, 19, (7), 330-40.
17. Neal, A. L.; Dublin, S. N.; Taylor, J.; Bates, D. J.; Burns, J. L.; Apkarian, R.; DiChristina, T. J., Terminal electron acceptors influence the quantity and chemical composition of capsular exopolymers produced by anaerobically growing Shewanella spp. Biomacromolecules 2007, 8, (1), 166-74.
18. Myers, C. R.; Nealson, K. H., Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 1988, 240, (4857), 1319-21.
19. Coursolle, D.; Gralnick, J. A., Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1. Front Microbiol 2012, 3, 56.
20. Michelson, K.; Alcalde, R. E.; Sanford, R. A.; Valocchi, A. J.; Werth, C. J., Diffusion-Based Recycling of Flavins Allows Shewanella oneidensis MR-1 To Yield Energy from Metal Reduction Across Physical Separations. Environ Sci Technol 2019, 53, (7), 3480-3487.
21. Liu, T.; Luo, X.; Wu, Y.; Reinfelder, J. R.; Yuan, X.; Li, X.; Chen, D.; Li, F., Extracellular Electron Shuttling Mediated by Soluble c-Type Cytochromes Produced by Shewanella oneidensis MR-1. Environ Sci Technol 2020, 54, (17), 10577-10587.
22. Lopez-Adams, R.; Newsome, L.; Moore, K. L.; Lyon, I. C.; Lloyd, J. R., Dissimilatory Fe(III) Reduction Controls on Arsenic Mobilization: A Combined Biogeochemical and NanoSIMS Imaging Approach. Front Microbiol 2021, 12, 640734.
23. Lovley, D. R.; Holmes, D. E.; Nevin, K. P., Dissimilatory Fe(III) and Mn(IV) Reduction. In Advances in Microbial Physiology, Academic Press: 2004; Vol. 49, pp 219-286.
24. Liu, C.; Kota, S.; Zachara, J. M.; Fredrickson, J. K.; Brinkman, C. K., Kinetic Analysis of the Bacterial Reduction of Goethite. Environmental Science & Technology 2001, 35, (12), 2482-2490.
25. Xu, S.; Adhikari, D.; Huang, R.; Zhang, H.; Tang, Y.; Roden, E.; Yang, Y., Biochar-Facilitated Microbial Reduction of Hematite. Environmental Science & Technology 2016, 50, (5), 2389-2395.
26. Cooper, R. E.; DiChristina, T. J., Fe(III) Oxide Reduction by Anaerobic Biofilm Formation-DeficientS-Ribosylhomocysteine Lyase (LuxS) Mutant of Shewanella oneidensis. Geomicrobiology Journal 2019, 36, (7), 639-650.
27. Huang, J.-H.; Voegelin, A.; Pombo, S. A.; Lazzaro, A.; Zeyer, J.; Kretzschmar, R., Influence of Arsenate Adsorption to Ferrihydrite, Goethite, and Boehmite on the Kinetics of Arsenate Reduction by Shewanella putrefaciens strain CN-32. Environmental Science & Technology 2011, 45, (18), 7701-7709.
28. Zhang, L.; Chen, Y.; Xia, Q.; Kemner, K. M.; Shen, Y.; O'Loughlin, E. J.; Pan, Z.; Wang, Q.; Huang, Y.; Dong, H.; Boyanov, M. I., Combined Effects of Fe(III)-Bearing Clay Minerals and Organic Ligands on U(VI) Bioreduction and U(IV) Speciation. Environ Sci Technol 2021, 55, (9), 5929-5938.
29. Brutinel, E. D.; Gralnick, J. A., Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 2012, 93, (1), 41-8.
30. Kotloski, N. J.; Gralnick, J. A., Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 2013, 4, (1).
31. Shi, L.; Richardson, D. J.; Wang, Z.; Kerisit, S. N.; Rosso, K. M.; Zachara, J. M.; Fredrickson, J. K., The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ Microbiol Rep 2009, 1, (4), 220-7.
32. Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H. Q.; Fredrickson, J. K., Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 2016, 14, (10), 651-62.
33. Liu, X.; Shi, L.; Gu, J.-D., Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnology Advances 2018, 36, (7), 1815-1827.
34. Nevin, K. P.; Lovley, D. R., Lack of Production of Electron-Shuttling Compounds or Solubilization of Fe(III) during Reduction of Insoluble Fe(III) Oxide by Geobacter metallireducens. Applied and Environmental Microbiology 2000, 66, (5), 2248-2251.
35. Lies, D. P.; Hernandez, M. E.; Kappler, A.; Mielke, R. E.; Gralnick, J. A.; Newman, D. K., Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms. Appl Environ Microbiol 2005, 71, (8), 4414-26.
36. Chong, G. W.; Pirbadian, S.; El-Naggar, M. Y., Surface-Induced Formation and Redox-Dependent Staining of Outer Membrane Extensions in Shewanella oneidensis MR-1. Frontiers in Energy Research 2019, 7.
37. El-Naggar, M. Y.; Wanger, G.; Leung, K. M.; Yuzvinsky, T. D.; Southam, G.; Yang, J.; Lau, W. M.; Nealson, K. H.; Gorby, Y. A., Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci U S A 2010, 107, (42), 18127-31.
38. Fredrickson, J. K.; Romine, M. F.; Beliaev, A. S.; Auchtung, J. M.; Driscoll, M. E.; Gardner, T. S.; Nealson, K. H.; Osterman, A. L.; Pinchuk, G.; Reed, J. L.; Rodionov, D. A.; Rodrigues, J. L.; Saffarini, D. A.; Serres, M. H.; Spormann, A. M.; Zhulin, I. B.; Tiedje, J. M., Towards environmental systems biology of Shewanella. Nat Rev Microbiol 2008, 6, (8), 592-603.
39. Kouzuma, A.; Kasai, T.; Hirose, A.; Watanabe, K., Catabolic and regulatory systems in Shewanella oneidensis MR-1 involved in electricity generation in microbial fuel cells. Front Microbiol 2015, 6, 609.
40. Pirbadian, S.; Barchinger, S. E.; Leung, K. M.; Byun, H. S.; Jangir, Y.; Bouhenni, R. A.; Reed, S. B.; Romine, M. F.; Saffarini, D. A.; Shi, L.; Gorby, Y. A.; Golbeck, J. H.; El-Naggar, M. Y., Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 2014, 111, (35), 12883-8.
41. Breuer, M.; Rosso, K. M.; Blumberger, J.; Butt, J. N., Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 2015, 12, (102), 20141117.
42. Shi, L.; Squier, T. C.; Zachara, J. M.; Fredrickson, J. K., Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 2007, 65, (1), 12-20.
43. Lower, B. H.; Yongsunthon, R.; Shi, L.; Wildling, L.; Gruber, H. J.; Wigginton, N. S.; Reardon, C. L.; Pinchuk, G. E.; Droubay, T. C.; Boily, J. F.; Lower, S. K., Antibody recognition force microscopy shows that outer membrane cytochromes OmcA and MtrC are expressed on the exterior surface of Shewanella oneidensis MR-1. Appl Environ Microbiol 2009, 75, (9), 2931-5.
44. Xiong, Y.; Shi, L.; Chen, B.; Mayer, M. U.; Lower, B. H.; Londer, Y.; Bose, S.; Hochella, M. F.; Fredrickson, J. K.; Squier, T. C., High-Affinity Binding and Direct Electron Transfer to Solid Metals by the Shewanella oneidensis MR-1 Outer Membrane c-type Cytochrome OmcA. Journal of the American Chemical Society 2006, 128, (43), 13978-13979.
45. Wigginton, N. S.; Rosso, K. M.; Hochella, M. F., Mechanisms of Electron Transfer in Two Decaheme Cytochromes from a Metal-Reducing Bacterium. The Journal of Physical Chemistry B 2007, 111, (44), 12857-12864.
46. Wang, Z.; Liu, C.; Wang, X.; Marshall, M. J.; Zachara, J. M.; Rosso, K. M.; Dupuis, M.; Fredrickson, J. K.; Heald, S.; Shi, L., Kinetics of reduction of Fe(III) complexes by outer membrane cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 2008, 74, (21), 6746-55.
47. Ross, D. E.; Brantley, S. L.; Tien, M., Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1. Appl Environ Microbiol 2009, 75, (16), 5218-26.
48. Schuetz, B.; Schicklberger, M.; Kuermann, J.; Spormann, A. M.; Gescher, J., Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 2009, 75, (24), 7789-96.
49. Kees, E. D.; Pendleton, A. R.; Paquete, C. M.; Arriola, M. B.; Kane, A. L.; Kotloski, N. J.; Intile, P. J.; Gralnick, J. A., Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role. Appl Environ Microbiol 2019, 85, (16).
50. Covington, E. D.; Gelbmann, C. B.; Kotloski, N. J.; Gralnick, J. A., An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol Microbiol 2010, 78, (2), 519-32.
51. Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R., Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences 2008, 105, (10), 3968-3973.
52. von Canstein, H.; Ogawa, J.; Shimizu, S.; Lloyd, J. R., Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 2008, 74, (3), 615-23.
53. Okamoto, A.; Kalathil, S.; Deng, X.; Hashimoto, K.; Nakamura, R.; Nealson, K. H., Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 2014, 4, 5628.
54. Coursolle, D.; Gralnick, J. A., Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Mol Microbiol 2010, 77, (4), 995-1008.
55. O’Loughlin, E. J.; Kelly, S. D.; Kemner, K. M.; Csencsits, R.; Cook, R. E., Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust. Chemosphere 2003, 53, (5), 437-446.
56. Wiatrowski, H. A.; Das, S.; Kukkadapu, R.; Ilton, E. S.; Barkay, T.; Yee, N., Reduction of Hg(II) to Hg(0) by Magnetite. Environmental Science & Technology 2009, 43, (14), 5307-5313.
57. Amirbahman, A.; Kent, D. B.; Curtis, G. P.; Marvin-Dipasquale, M. C., Kinetics of homogeneous and surface-catalyzed mercury(II) reduction by iron(II). Environ Sci Technol 2013, 47, (13), 7204-13.
58. Zhao, L.; Li, Y.; Zhang, L.; Zheng, J.; Pierce, E. M.; Gu, B., Mercury Adsorption on Minerals and Its Effect on Microbial Methylation. ACS Earth and Space Chemistry 2019, 3, (7), 1338-1345.
59. He, Z.; Traina, S. J.; Bigham, J. M.; Weavers, L. K., Sonolytic Desorption of Mercury from Aluminum Oxide. Environmental Science & Technology 2005, 39, (4), 1037-1044.
60. Hintelmann, H.; Keppel-Jones, K.; Evans, R. D., Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environmental Toxicology and Chemistry 2000, 19, (9), 2204-2211.
61. Jonsson, S.; Skyllberg, U.; Nilsson, M. B.; Westlund, P. O.; Shchukarev, A.; Lundberg, E.; Bjorn, E., Mercury methylation rates for geochemically relevant Hg(II) species in sediments. Environ Sci Technol 2012, 46, (21), 11653-9.
62. Jonsson, S.; Skyllberg, U.; Nilsson, M. B.; Lundberg, E.; Andersson, A.; Bjorn, E., Differentiated availability of geochemical mercury pools controls methylmercury levels in estuarine sediment and biota. Nat Commun 2014, 5, 4624.
63. Zhang, L.; Wu, S.; Zhao, L.; Lu, X.; Pierce, E. M.; Gu, B., Mercury Sorption and Desorption on Organo-Mineral Particulates as a Source for Microbial Methylation. Environ Sci Technol 2019, 53, (5), 2426-2433.
64. Coby, A. J.; Picardal, F. W., Influence of sediment components on the immobilization of Zn during microbial Fe-(hydr)oxide reduction. Environ Sci Technol 2006, 40, (12), 3813-8.
65. Gralnick, J. A.; Newman, D. K., Extracellular respiration. Molecular Microbiology 2007, 65, (1), 1-11.
66. Jiang, J.; Kappler, A., Kinetics of Microbial and Chemical Reduction of Humic Substances: Implications for Electron Shuttling. Environmental Science & Technology 2008, 42, (10), 3563-3569.
67. Aulenta, F.; Maio, V. D.; Ferri, T.; Majone, M., The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresour Technol 2010, 101, (24), 9728-33.
68. Gu, B.; Bian, Y.; Miller, C. L.; Dong, W.; Jiang, X.; Liang, L., Mercury reduction and complexation by natural organic matter in anoxic environments. Proc Natl Acad Sci U S A 2011, 108, (4), 1479-83.
69. Zheng, W.; Liang, L.; Gu, B., Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environ Sci Technol 2012, 46, (1), 292-9.
70. Lovley, D. R.; Coates, J. D.; Blunt-Harris, E. L.; Phillips, E. J. P.; Woodward, J. C., Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, (6590), 445-448.
71. Lovley, D. R.; Fraga, J. L.; Blunt-Harris, E. L.; Hayes, L. A.; Phillips, E. J. P.; Coates, J. D., Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochimica et Hydrobiologica 1998, 26, (3), 152-157.
72. Rocha, J. C.; Junior, É. S.; Zara, L. F.; Rosa, A. H.; dos Santos, A.; Burba, P., Reduction of mercury(II) by tropical river humic substances (Rio Negro) — A possible process of the mercury cycle in Brazil. Talanta 2000, 53, (3), 551-559.
73. Kappler, A.; Benz, M.; Schink, B.; Brune, A., Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology 2004, 47, (1), 85-92.
74. Uchimiya, M.; Stone, A. T., Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 2009, 77, (4), 451-8.
75. Wolf, M.; Kappler, A.; Jiang, J.; Meckenstock, R. U., Effects of Humic Substances and Quinones at Low Concentrations on Ferrihydrite Reduction by Geobacter metallireducens. Environmental Science & Technology 2009, 43, (15), 5679-5685.
76. Roden, E. E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A.; Stoesser, R.; Konishi, H.; Xu, H., Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience 2010, 3, (6), 417-421.
77. Chen, J.; Gu, B.; Royer, R.; Burgos, W., The roles of natural organic matter in chemical and microbial reduction of ferric iron. The Science of The Total Environment 2003, 307, (1-3), 167-178.
78. Newman, D. K.; Kolter, R., A role for excreted quinones in extracellular electron transfer. Nature 2000, 405, (6782), 94-97.
79. Barkay, T.; Miller, S. M.; Summers, A. O., Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews 2003, 27, (2-3), 355-384.
80. Lin, C.-C.; Yee, N.; Barkay, T., Microbial Transformations in the Mercury Cycle. In Environmental Chemistry and Toxicology of Mercury, 2011; pp 155-191.
81. Charlet, L.; Bosbach, D.; Peretyashko, T., Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study. Chemical Geology 2002, 190, (1), 303-319.
82. Coursolle, D.; Baron, D. B.; Bond, D. R.; Gralnick, J. A., The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 2010, 192, (2), 467-74.
83. Abboud, R.; Popa, R.; Souza-Egipsy, V.; Giometti, C. S.; Tollaksen, S.; Mosher, J. J.; Findlay, R. H.; Nealson, K. H., Low-temperature growth of Shewanella oneidensis MR-1. Appl Environ Microbiol 2005, 71, (2), 811-6.
84. Jeong, Y.-S.; Song, S.-K.; Lee, S.-J.; Hur, B.-K., The growth and EPA synthesis of Shewanella oneidensis MR-1 and expectation of EPA biosynthetic pathway. Biotechnology and Bioprocess Engineering 2006, 11, (2), 127.
85. Khare, N.; Hesterberg, D.; Beauchemin, S.; Wang, S.-L., XANES Determination of Adsorbed Phosphate Distribution between Ferrihydrite and Boehmite in Mixtures. Soil Science Society of America Journal 2004, 68, (2), 460-469.
86. Ekstrom, E. B.; Morel, F. M. M., Cobalt Limitation of Growth and Mercury Methylation in Sulfate-Reducing Bacteria. Environmental Science & Technology 2008, 42, (1), 93-99.
87. Szczuka, A.; Morel, F. M.; Schaefer, J. K., Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environ Sci Technol 2015, 49, (12), 7432-8.
88. Kostka, J.; Stucki, J.; Nealson, K.; Wu, J. U. N., Reduction of Structural Fe(III) in Smectite by a Pure Culture of Shewanella Putrefaciens Strain MR1. Clays and Clay Minerals - CLAYS CLAY MINER 1996, 44, 522-529.
89. Kostka, J. E.; Wu, J.; Nealson, K. H.; Stucki, J. W., The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta 1999, 63, (22), 3705-3713.
90. Komadel, P.; Madejová, J.; Stucki, J. W., Structural Fe(III) reduction in smectites. Applied Clay Science 2006, 34, (1-4), 88-94.
91. Ribeiro, F. R.; Fabris, J. D.; Kostka, J. E.; Komadel, P.; Stucki, J. W., Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite. Pure and Applied Chemistry 2009, 81, (8), 1499-1509.
92. Schaefer, M. V.; Gorski, C. A.; Scherer, M. M., Spectroscopic Evidence for Interfacial Fe(II)−Fe(III) Electron Transfer in a Clay Mineral. Environmental Science & Technology 2011, 45, (2), 540-545.
93. Neumann, A.; Olson, T. L.; Scherer, M. M., Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites. Environ Sci Technol 2013, 47, (13), 6969-77.
94. Latta, D. E.; Neumann, A.; Premaratne, W. A. P. J.; Scherer, M. M., Fe(II)–Fe(III) Electron Transfer in a Clay Mineral with Low Fe Content. ACS Earth and Space Chemistry 2017, 1, (4), 197-208.
95. Mackenzie, R. C., Cation Exchange and Clay Mineral Structure. Nature 1951, 168, (4264), 107-108.
96. Norrish, K., The swelling of montmorillonite. Discussions of the Faraday Society 1954, 18, (0), 120-134.
97. Peng, J.; Yi, H.; Song, S.; Zhan, W.; Zhao, Y., Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: A molecular dynamic study. Results in Physics 2019, 12, 113-117.
98. Samain, L.; Jaworski, A.; Edén, M.; Ladd, D. M.; Seo, D.-K.; Javier Garcia-Garcia, F.; Häussermann, U., Structural analysis of highly porous γ-Al2O3. Journal of Solid State Chemistry 2014, 217, 1-8.
99. Ginting, E.; Bukit, N., Synthesis and Characterization of Alumina Precursors Derived from Aluminum Metal through Electrochemical Method. Indonesian Journal of Chemistry 2015, 15, 123-129.
100. Wischert, R.; Laurent, P.; Coperet, C.; Delbecq, F.; Sautet, P., gamma-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of "defect" sites. J Am Chem Soc 2012, 134, (35), 14430-49.
101. Reinsch, B. C.; Forsberg, B.; Penn, R. L.; Kim, C. S.; Lowry, G. V., Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents. Environmental Science & Technology 2010, 44, (9), 3455-3461.
102. Kosmulski, M., pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 2009, 337, (2), 439-48.
103. Jastrzębska, A. M.; Karwowska, E.; Olszyna, A. R.; Kunicki, A., Influence of bacteria adsorption on zeta potential of Al2O3 and Al2O3/Ag nanoparticles in electrolyte and drinking water environment studied by means of zeta potential. Surface and Coatings Technology 2015, 271, 225-233.
104. Keller, A. A.; Wang, H.; Zhou, D.; Lenihan, H. S.; Cherr, G.; Cardinale, B. J.; Miller, R.; Ji, Z., Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices. Environmental Science & Technology 2010, 44, (6), 1962-1967.
105. Mathur, S. S.; Dzombak, D. A., Chapter 16 - Surface complexation modeling: Goethite. In Interface Science and Technology, Lützenkirchen, J., Ed. Elsevier: 2006; Vol. 11, pp 443-468.
106. Kim, C. S.; Rytuba, J. J.; Brown, G. E., EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides. Journal of Colloid and Interface Science 2004, 271, (1), 1-15.
107. Kim, C. S.; Rytuba, J. J.; Brown, G. E., EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides. II. Effects of chloride and sulfate. J Colloid Interface Sci 2004, 270, (1), 9-20.
108. Hu, H.; Lin, H.; Zheng, W.; Rao, B.; Feng, X.; Liang, L.; Elias, D. A.; Gu, B., Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. Environ Sci Technol 2013, 47, (19), 10922-30.
109. Bucking, C.; Popp, F.; Kerzenmacher, S.; Gescher, J., Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 2010, 306, (2), 144-51.
110. Vandevivere, P.; Kirchman, D. L., Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 1993, 59, (10), 3280-6.
111. Flemming, H. C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S. A.; Kjelleberg, S., Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016, 14, (9), 563-75.
112. Dohnalkova, A. C.; Marshall, M. J.; Arey, B. W.; Williams, K. H.; Buck, E. C.; Fredrickson, J. K., Imaging hydrated microbial extracellular polymers: comparative analysis by electron microscopy. Appl Environ Microbiol 2011, 77, (4), 1254-62.
113. Li, S. W.; Sheng, G. P.; Cheng, Y. Y.; Yu, H. Q., Redox properties of extracellular polymeric substances (EPS) from electroactive bacteria. Sci Rep 2016, 6, 39098.
114. Xiao, Y.; Zhang, E.; Zhang, J.; Dai, Y.; Yang, Z.; Christensen, H. E. M.; Ulstrup, J.; Zhao, F., Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances 2017, 3, (7), e1700623.
115. Costa, O. Y. A.; Raaijmakers, J. M.; Kuramae, E. E., Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front Microbiol 2018, 9, 1636.
116. Gao, L.; Lu, X.; Liu, H.; Li, J.; Li, W.; Song, R.; Wang, R.; Zhang, D.; Zhu, J., Mediation of Extracellular Polymeric Substances in Microbial Reduction of Hematite by Shewanella oneidensis MR-1. Front Microbiol 2019, 10, 575.
117. Marshall, M. J.; Beliaev, A. S.; Dohnalkova, A. C.; Kennedy, D. W.; Shi, L.; Wang, Z.; Boyanov, M. I.; Lai, B.; Kemner, K. M.; McLean, J. S.; Reed, S. B.; Culley, D. E.; Bailey, V. L.; Simonson, C. J.; Saffarini, D. A.; Romine, M. F.; Zachara, J. M.; Fredrickson, J. K., c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biol 2006, 4, (9), e268.
118. Korenevsky, A.; Beveridge, T. J., The surface physicochemistry and adhesiveness of Shewanella are affected by their surface polysaccharides. Microbiology (Reading) 2007, 153, (Pt 6), 1872-1883.
119. Kouzuma, A.; Meng, X. Y.; Kimura, N.; Hashimoto, K.; Watanabe, K., Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl Environ Microbiol 2010, 76, (13), 4151-7.
120. Cao, B.; Ahmed, B.; Kennedy, D. W.; Wang, Z.; Shi, L.; Marshall, M. J.; Fredrickson, J. K.; Isern, N. G.; Majors, P. D.; Beyenal, H., Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization. Environ Sci Technol 2011, 45, (13), 5483-90.
121. Cao, B.; Shi, L.; Brown, R. N.; Xiong, Y.; Fredrickson, J. K.; Romine, M. F.; Marshall, M. J.; Lipton, M. S.; Beyenal, H., Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environ Microbiol 2011, 13, (4), 1018-31.
122. Zhang, Z.; Si, R.; Lv, J.; Ji, Y.; Chen, W.; Guan, W.; Cui, Y.; Zhang, T., Effects of Extracellular Polymeric Substances on the Formation and Methylation of Mercury Sulfide Nanoparticles. Environ Sci Technol 2020, 54, (13), 8061-8071.
123. Reardon, C. L.; Dohnalkova, A. C.; Nachimuthu, P.; Kennedy, D. W.; Saffarini, D. A.; Arey, B. W.; Shi, L.; Wang, Z.; Moore, D.; McLean, J. S.; Moyles, D.; Marshall, M. J.; Zachara, J. M.; Fredrickson, J. K.; Beliaev, A. S., Role of outer-membrane cytochromes MtrC and OmcA in the biomineralization of ferrihydrite by Shewanella oneidensis MR-1. Geobiology 2010, 8, (1), 56-68.
124. Jing, X.; Wu, Y.; Shi, L.; Peacock, C. L.; Ashry, N. M.; Gao, C.; Huang, Q.; Cai, P.; Liu, S.-J., Outer Membrane c-Type Cytochromes OmcA and MtrC Play Distinct Roles in Enhancing the Attachment of Shewanella oneidensis MR-1 Cells to Goethite. Applied and Environmental Microbiology 2020, 86, (23), e01941-20.
125. Zheng, W.; Lin, H.; Mann, B. F.; Liang, L.; Gu, B., Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions. Environ Sci Technol 2013, 47, (22), 12827-34.
126. Belkin, A.; Bezryadin, A.; Hendren, L.; Hubler, A., Recovery of Alumina Nanocapacitors after High Voltage Breakdown. Sci Rep 2017, 7, (1), 932.
127. Stookey, L. L., Ferrozine---a new spectrophotometric reagent for iron. Analytical Chemistry 1970, 42, (7), 779-781.
128. Schwertmann, U., and R.M. Cornell, “Iron oxides in the laboratory: preparation and characterization”, WILEY-VCH Verlag GmbH 2000
129. Kotloski, N. J., Export and role of flavin electron shuttles in Shewanella oneidensis Strain MR-1. University of Minnesota 2014
130. 廖炳傑, 2014. 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響. 中央大學環境工程研究所學位論文
131. 王詩芸, 2016. 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢;Reductive dissolution of mercury-bearing iron(III) (oxyhydr)oxides by dissimilatory iron-reducing bacteria and the potential to mobilize mercury in its elemental form. 中央大學環境工程研究所學位論文
132. 陳詠菁, 2018. Shewanella oneidensis MR-1 於水相均質系統中還原 二價汞之機制探討 Endogenous flavins dominate extracellular reduction of Hg(II) to Hg(0) by Shewanella oneidensis MR-1 in aqueous phase. 中央大學環境工程研究所學位論文