跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王欣婷
Hsin-Ting Wang
論文名稱: 緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究
Swelling behavior of buffer material under simulated near field environment in a deep geological repository
指導教授: 黃偉慶
Wei-Hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 99
中文關鍵詞: 深層處置場回脹性質緩衝材料
外文關鍵詞: deep geological repository, buffer material, swelling behavior
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對放射性廢棄物深層處置場近場障壁工程中,探討近場環境中可能影響緩衝材料回脹性質的各種因素,包含當處置場封閉後初期地下水尚未入侵,緩衝材料無水狀態下遭受高溫作用之土壤粉末乾燥加熱、地下水入侵後形成水熱環境系統、高放射性廢棄物輻射照射造成緩衝材料劣化之粉末輻射照射處理、深層地下水入侵造成含鹽水溶液系統、膨潤土與混凝土反應使pH值提升及試體的尺寸效應等。
    本研究試驗材料為台東樟原的日興土,試驗結果顯示(1) 100℃乾燥加熱對回脹行為沒有影響,200℃以內乾燥加熱的試體回脹應變量大幅下降,300℃~400℃乾燥加熱的試體回脹行為呈不規則變化趨勢;(2)日興土回脹應變量隨水熱溫度提昇而降低;(3)經輻射照射後日興土之回脹應變量略為降低;(4)含鹽溶液回脹應變量隨著濃度增加而降低;而在NaCl溶液中日興土最大回脹應變量皆高於CaCl2溶液中;(5)日興土的回脹應變量受溶液系統pH值影響,在pH=13時,日興土回脹應變量大幅提昇。


    Compacted bentonites are attracting greater attention as buffer material for deep geological repository of high-level radioactive waste. Swelling behavior is a significant property of buffer material in achieving the self-healing function. The swelling behavior of buffer material will be affected by near-field environment, including decay heat, radiation, groundwater intrusion, and pH evolution, etc. To find out the impact on swelling behavior, several scenarios expected in the near-field were considered in this research work, including heat treatment, hydrothermal temperature, radiation, saline solution, and pH effect.
    The buffer material used was Zhisin clay produced from the eastern coast of Taiwan. Experimental results show that: (1) swelling behavior is not affected by thermal treatment temperature under 100℃, but the swelling strain decreases as Zhisin clay was heated up to 200℃, while the swelling strain varied irregularly at heating temperature greater than 300℃; (2) the swelling strain of Zhisin clay decreases with increasing hydrothermal temperature; (3) radiation causes reduction in swelling strain of Zhisin clay; (4) the swelling strain decreases with increasing electrolyte concentration, and the swelling strain of Zhisin clay in NaCl solution is higher than that in CaCl2 solution; (5) the swelling strain of Zhisin clay is affected by pH of the inundating solution, at pH=13, the swelling strain of Zhisin clay increases markedly.

    摘 要.....................................I ABSTRACT ..................................Ⅱ 圖 目 錄.................................VIII 表 目 錄..................................XII 第一章 緒論................................ 1 1.1 緣起................................... 1 1.2 研究目的............................... 2 1.3 研究範圍............................... 3 第二章 文獻回顧............................ 5 2.1 最終處置場設計概念..................... 5 2.2 緩衝材料之概念與預期功能............... 7 2.3 黏土礦物基本特性....................... 9 2.3.1 黏土礦物結晶構造.................... 9 2.3.1.1 蒙脫石…………………………………11 2.3.1.2 高嶺石…………………………………11 2.3.1.3 伊利石…………………………………11 2.3.2 蒙脫石族礦物性質...................12 2.4 黏土-水-電解質交互作用................14 2.4.1 黏土-水-電解質系統.................14 2.4.2 分散及絮凝結構.....................15 2.4.3 含鹽溶液對黏土結構效應.............16 2.4.4 pH值對黏土結構效應.................16 2.5 擴散雙層理論和模式原理................17 2.5.1 溫度對擴散雙層厚度之影響...........19 2.5.2 電解質濃度及離子價數對擴散雙層厚度之影 響.................................19 2.5.3 pH值對擴散雙層厚度之影響...........20 2.5.4 陽離子水化半徑對擴散雙層厚度之影響.21 2.6 回脹機制及回脹行為....................22 2.6.1 回脹機制...........................22 2.6.1.1 晶格回脹.......................22 2.6.1.2 滲透回脹.......................24 2.6.2 回脹行為...........................25 2.7 處置場近場環境分析....................27 2.7.1 衰變熱.............................27 2.7.2 輻射...............................28 2.7.3 地下水入侵.........................29 2.7.4 近場pH值...........................30 第三章 研究計畫...........................31 3.1 研究流程..............................32 3.2 試驗材料..............................33 3.3 回脹試驗..............................33 3.3.1 回脹試驗方法選擇...................33 3.3.2 回脹試體製作.......................33 3.3.3 單向度回脹試驗.....................35 3.3.4 模擬近場環境之試驗方法.............37 3.3.4.1 衰變熱效應......................37 3.3.4.2 輻射效應........................37 3.3.4.3 地下水化學效應..................37 3.3.4.4 pH值效應........................38 3.4 材料基本土壤力學性質分析方法..........38 3.4.1 自然含水量.........................38 3.4.2 比重試驗...........................39 3.4.3 粒徑分析試驗.......................39 3.4.4 阿太堡限度試驗.....................39 3.4.5 活性(Activity).....................39 3.5 材料化學/礦物性質分析方法.............40 3.5.1 化學成分分析.......................40 3.5.2 X光繞射分析儀......................40 3.5.3 FTIR礦物分析.......................41 3.5.4 熱重分析(TGA)......................41 3.5.5 重量損失試驗.......................42 3.5.6 土壤pH反應.........................42 第四章 試驗結果與分析......................43 4.1 日興土原礦性質分析....................43 4.1.1 基本性質試驗分析...................43 4.1.2 化學成分分析.......................44 4.1.3 XRD分析............................44 4.1.4 紅外光光譜分析(FTIR)...............45 4.1.5 熱重分析(TGA)......................47 4.2 黏土材料回脹行為......................48 4.3 不同乾密度及試體尺寸之自由回脹........50 4.3.1 不同乾密度之自由回脹...............50 4.3.2不同試體尺寸之自由回脹..............52 4.4 日興土於模擬近場環境下之自由回脹行為..56 4.4.1 乾燥加熱環境中日興土之自由回脹.....56 4.4.2 水熱環境中日興土之自由回脹.........66 4.4.3 輻射照射後日興土之自由回脹.........70 4.4.4 含鹽溶液中日興土之自由回脹.........74 4.4.5 酸鹼環境中日興土之自由回脹.........82 第五章 結論與建議..........................92 5.1 結論..................................92 5.2 建議..................................93 參考文獻...................................94

    王明光,環境土壤化學,五南圖書出版,(2001)。
    台灣電力公司,我國用過核燃料長程處置:全程工作規劃
    書(2000版),(2000)。
    田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研
    究(Ι)」,行政院原子能委員會委託研究計劃研究報
    告,國立中央大學土木系,(2001)。
    田永銘、李德河,「黏土質材料的吸水回脹速率」,中國
    土木水利工程學刊,第六卷,第二期,第223-232頁,
    (1994)。
    沈茂松(1988),實用土壤力學試驗,增訂第七版,文笙書
    局。
    施國欽,岩石力學:大地工程學(四),文笙書局,
    (1999)。
    莊文壽、洪錦雄、董家寶,「深層地質處置技術之研
    究」,核研季刊,第三十七期,第44-54頁,(2000)。
    莊文淵,土壤材料之核種遷移吸附特性試驗與研究,核能
    研究所內部報告,INER-T2443,第3-1頁,(1998)。
    核能研究所,「我國用過核燃料深層地質處置概念討論
    會」,行政院原子能委員會核能研究所,(2002)。
    陳文泉、黃偉慶「深地層處置緩衝材料熱-水力機械-化學
    耦合作用探討」,核研季刊,第四十二期,第38-48
    頁,(2002)。
    陳文泉,國立中央大學土木工程系材料組博士班資格考試
    會議記錄,(2003)。
    陳顧齡,「酸鹼度和溫度對鍶銫在膨潤土中吸附與擴散行
    為之影響」,國立清華大學原子科學系碩士論文,新
    竹,(1996)。
    許俊男,「在模擬地下水中省產黏土礦物對鍶銫核種的吸
    附機制研究1/1」,放射性物料管理局八十五年度專題
    研究計劃期末報告,(1996)。
    黃偉慶、葉佐仁、盧俊鼎,「放射性廢料處置場回填材料
    之工程性質」,核子科學,第三十八卷,第二期,第
    107-118頁,(2001)。
    趙杏媛、張有瑜,黏土礦物與黏土礦物分析,海洋出版
    社,北京,(1990)。
    萬鑫森,基礎土壤物理學,茂昌圖書,(1991)。
    萬獻銘,「台灣樟原及瑞美滑潤石黏土之礦物學特性」,
    礦冶,第68-79頁,(1976)。
    蔡敏行,襯裏土對放射性待處理物料長期貯存效果之研
    究,放射性待處理物料管理處委託研究報告,國立成功
    大學礦油系,(1985)。
    劉慧玲,「台東樟原黏土資源之有機黏土備置研究」,國
    立成功大學資源工程學系碩士論文,台南,(2001)。
    ASTM, (1996). ”Designation D4546-96: Standard
    Test Methods for One-Dimensional Swell or
    Settlement Potential of Cohesive.” Annual Book
    of ASTM Standard, Vol. 04.08, ASTM, pp. 1-7.
    Abu-Zreig, M.M., Al-Akhras, N.M., and Attom, M.F.
    (2001). ”Influence of heat treatment on the
    behavior of clay soil.” Applied Clay Science,
    Vol. 20, pp. 129-135.
    Abdullah, W.S., Alshibli, K.A., and Al-Zou’bi,
    M.S. (1999). “Influence of pore water
    chemistry on swelling behavior of compacted
    clays.” Applied Clay Science. Vol.15, pp. 447-
    462.
    Bohn, H.L., McNeal, B.L., and O’Connor, G..A.
    (1985). Soil Chemistry, 2nd ed., John Wiley &
    Sons, New York.
    Cho, W.J., Lee J.O., and Kang C.H. (2000). ”
    Influence of temperature elevation on the
    sealing performance of a potential buffer
    material for a high-level radioactive waste
    repository.” Annals of Nuclear Energy, Vol.
    27, pp. 1271 -1284.
    Egloffstein T. (1996). ”Bentonite as sealing
    material in geosynthetic clay liners.”
    Geosythetics: Applications, Design and
    Construction, pp. 799-805.
    Grim, R.E. (1959). “Physico-Chemical properties
    of soils: clay minerals.” Journal of the Soil
    Mechanics and Foundations Division, ASCE, Vol.
    85, No. SM2, pp. 1-17.
    Grauer, R. (1990). The Chemical Behaviour of
    Montmorillonite in a Repository Backfill:
    Selected Aspects, NAGRA TR 88-24E, NAGRA,
    Baden, Switzerland.
    Iwata, S., Tabuchi, T., and Warkentin, B.P.
    (1995). Soil Water Interactions-Mechanisms and
    Applications. Marcel Deeker, New York.
    JNC(1999). H12 Project to Establish Technical
    Basis for HLW Disposal in Japan, Supporting
    Report 1: Geological Environment in Japan, Japan Nuclear Cycle Development Institute, JNC
    TN1400 99-011.
    Johnson, L.H. (1996). The Disposal of Canadian’s
    Nuclear Fuel Waste: A Study of Postclosure
    Safety of In-room Emplacement of Used Canadian
    Fuel in Copper Containers in Permeable Plutonic
    Rock, Volume 2: Vault Model, Atomic Energy of
    Canadian Limited, AECL-11494-2.
    Komine, H., and Ogata, N.(1994). “Experimental
    study on swelling characteristics of compacted
    bentonite.” Canadian Geotechnical Journal,
    Vol. 31, pp. 478-490.
    Komine, H., and Ogata, N. (1999). ”A trial
    design of buffer materials from the viewpoint
    of self-sealing.” Proceeding of Radioactive
    Waste Management and Environmental Remediation,
    ASME.
    Karnland, O. (1997). Bentonite Swelling Pressure
    in Strong NaCl Solutions. Correlation between
    Model Calculation and Experimentally Determined
    Data, Swedish Nuclear Fuel and Waste Management
    Co., SKB TR-97-31.
    Kashir, M. and Yanful, E. (2001). “Hydraulic
    Conductivity of Bentonite Permeated with Acid
    Mine Drainage.” Canadian Geotechnical Journal,
    Vol. 38, pp. 1034-1048.
    Klute, A. (1986). Methods of Soil Analysis Part
    1, American Society of Agronomy, USA.
    Kok, M.V. (2002). “Thermogravimetry of selected
    bentonites.” Energy Sources, Vol. 24, pp. 907-
    914.
    Lambe, T.W. (1958). “The structure of compacted
    clay.” Journal of the Soil Mechanics and
    Foundations Division, ASCE, Vol. 84, No. SM2.
    pp.1654-1-1654-34.
    Lide, D.R., (2001). CRC Handbook of Chemistry and
    Physics, 82nd ed., CRC Press, New York.
    Marcial, d., Delage. P., and Cui Y.J. (2002). ”
    On the high stress compression of bentonites.”
    Canadian Geotechnical Journal, Vol. 39, pp. 812-
    820.
    Mitchell J.K. (1993). Fundamentals of Soil
    Behavior, 2nd ed, University of California,
    Berkeley.
    Madsen, F.T. and Muller-Vonmoos, M.(1989). “The
    swelling behavior of clays.” Applied Clay
    Science, Vol. 4, pp. 143-156.
    Madsen, F.T. (1998). ”Clay mineralogical
    investigations related to nuclear waste
    disposal.” Clay Minerals, Vol. 33, pp. 109-129.
    Madsen, F.T. (1999). ”International Society for
    Rock Mechanics commission on swelling rocks and
    commission on testing methods.” International
    Journal Rock Mechanical and Mining Science,
    Vol. 36, pp. 291-306.
    Mooney, R.W., Keenan, A.C., and Wood, L.A.
    (1952). “Adsorption of Water Vapor by
    Montmorillonite, II., Effect of Exchangeable
    Ions and Lattice Swelling as Measured by X-ray
    Diffraction.” Journal of American Chemistry
    Society, Vol.74, pp. 1371-1374.
    Norrish, K., (1954). The Swelling of
    Montmorillonite, Discussion of Faraday
    Society, Vol. 18, pp. 120-134.
    Pusch, R. and Karnland O. (1988). Hydrothermal
    effects on montmorillonite a preliminary study, SKB TR-88-15, Swedish Nuclear Fuel and Waste
    Management Co., Stockholm, Sweden.
    Pusch, R. (1983). Stability of deep sited
    smectite minerals in crystalline rock-chemical
    aspects, SKB TR-83-16, Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
    Pusch, R. (1994). Waste Disposal in Rock,
    Elsevier, Amsterdam.
    Pusch, R. (2001). The microstructure of MX-80
    clay with respect to its bulk physical
    properties under different environmental
    conditions, SKB TR-01-08, Swedish Nuclear Fuel
    and Waste Management Co., Stockholm, Sweden.
    Rao, K.S.S., Rao, S.M., and Gangadhara S.L.
    (2000). “Swelling behaviour of a desiccated
    Clay.” Geotechnical Testing Journal, GTJODJ,
    Vol. 23, NO. 2, pp. 193-198.
    Sherif, M.A., Ishibashi, I., and Medhin, B.W.
    (1982). “Swell of Wyoming Montmorillonite and
    Sand Mixtures.” Journal of Geotechnical
    Engineering, ASCE, Vol. 108, pp 33-45.
    Shainberg I., Bresler E., and Klausner Y. (1970).
    “Studies on Na/Ca Montmorillonite System 1. The
    Swelling Pressure.” Soil Science. Vol. 114.
    No. 4. pp. 214-219.
    Sivapullaiah, P. V., Sridharan, A., and Stalin V.
    K. (1996). ”Swelling behaviour of soil-
    bentonite mixture.” Canadian Geotechnical
    Journal, Vol. 33, pp.808-814.
    Summer, M.E. Swction G. (2000). Interdisciplinary
    Aspects of Soil Science. Handbook of Soil
    Science, 1st ed. CRC, USA.
    SKB. (1999). Deep repository for spent nuclear
    fuel SR97:Post-closure safety, SKB TR99-06.
    Swedish Nuclear Fuel and Waste Management Co.,
    Stockholm, Sweden.
    Wilson, M.J. (1994). Clay Mineralogy:
    Spectroscopic and Chemical Determinative
    Methods, Chapman & Hall, New York.
    Xu, Y. F., Matsuoka, H., and Sun, D.A.(2003)
    “Swelling characteristics of fractal-textured
    bentonite and its mixtures.” Applied Clay
    Science, Vol. 22. pp.197-209.
    Yong, R.N., and Benno, P.W. (1975). Soil
    Properties and Behaviour, Elsevier, New York.

    QR CODE
    :::