| 研究生: |
沈育仁 Yu-Zen Shan |
|---|---|
| 論文名稱: |
複合高分子電解質結構與電性之研究 Porous PVDF with LiClO4 complex as solid and wet polymer electrolyte |
| 指導教授: |
諸柏仁
Peter P. Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 聚偏氟乙烯 、高分子電解質 、酚醛樹酯 |
| 外文關鍵詞: | polymer electrolyte, poly(vinylidene fluoride), phenolic |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要:
高分子電解質主要的研究焦點集中在高分子中摻合不同的化合物或鹽類,其目的是欲增加高分子與離子的運動性,提高整體導電性。除此之外,更能改善高分子的界面穩定性與尺寸安定性。PVDF具有良好的機械性質、高的介電常數及高表面張力,對酸與鹼都有優良的抗腐蝕特性,與現今所使用的高分子複合電極有好的接著性。本研究中以PVDF為高分子母體,加入鋰鹽及酚醛樹酯(Phenolic)形成複合高分子電解質,並藉由FTIR、DSC、TGA、XRD、SEM及CV等儀器探討高分子物理性質、運動性質、結構關係及傳導機制。此外,本研究更開發高分子電解質之新製備方法,即是在PVDF溶液中進行酚醛樹酯聚合,使PVDF與酚醛產生緊密纏繞作用,降低PVDF結晶性。
本研究結果顯示鋰離子之移動主要是在PVDF孔洞間與非結晶區塊進行傳遞,酚醛樹酯加入除了能降低PVDF的結晶度、提高鹽類之解離度,亦能降低PVDF表面張力而改變其孔洞大小及分佈。此結果可以改進電解液之吸附行為,增加與電極界面接著力而降低PVDF與鋰金屬電極之間的界面問題。實驗結果證實我們設計之新型電解質製備方法之可行性,在膠態電解質系統中,酚醛的加入更可減緩鋰金屬上鈍化膜的生成,進而可延長電池使用上的壽命與循環效率。
Abstract
PVDF has good mechanical properties, high dielectric, high surface tension and resistance to acidic and basic corrosion. Porosity and torousity of the film affected the solvent uptake and ion conductivity. Numerous modifications have been explored to improve these properties. This investigation presents a new approach in preparing the solid polymer electrolyte by composite novolac type phenolic with poly (vinylidene fluoride)(PVDF). Both post solvent blending and in-situ approach where phenolic polymerization is achieved in the PVDF solution are performed and compared. The new material shows improved mechanical property and conductivity. Varieties of techniques such as XRD, TGA, SEM, CV and Impedance spectroscopy etc., are performed to evaluate these properties and ion mobility. Our research showed lithium ion transports through both amorphous domain and the surface side of PVDF facing macro-pore. The presence of phenolic in composite PVDF/Li improves conductivity, salt dissociation and decreased PVDF crystallinility. Furthermore, it modifies the dielectric constant, which decreases the surface tension and leads to smaller sol size and distribution in the film formation. As a result of the increased connection with the electrode due to the smaller sol formation, the junction barrier of interface (Lithium and PVDF) is increased. Furthermore, the in-situ preparative methods of the novel composite polymer electrolyte shows improved physical strength, high ionic conductivity suitable for solvent-free electrolyte. Although solvent uptake is hindered due to presence of phenolic, its applications as gel polymer electrolytes (GPE) has demonstrated satisfactory lifetime performance and recycle efficient in Li-ion battery.
第六章 參考文獻
(1) 薛立人, “ 二次電池的回顧與展望” , 工業材料雜誌, 88年4月, 第146期.
(2) 林振華, “充電式鋰離子電池-材料與應用”, 90年12月.
(3) 孫清華, “最新可充電電池技術大全”, 90年6月.
(4) 詹益松, “工業材料雜誌”, 90年3月,第171期.
(5) 宋金穎,國立清華大學化學工程學系博士論文,89年6月.
(6) M. Wakihara, Mat. Sci. and Engineering , 2001 , R33, 109.
(7) E. Peled, J. Electrochem. Soc., 1979, 126, 2047.
(8) E. Peled, D. Golodnitsky, G. Ardel, and V. Eshkenazy, Electrochim. Acta., 1995, 40, 2197.
(9) E. Peled, D. Golodnitsky, and G. Ardel, J. Electrochem. Soc., 1997, 144, L208-L210.
(10) Y. Ein-Eli, Electrochem. Solid-State Lett., 1999, 2, 212.
(11) R. Spotnitz, in Handbook of Battery-Materials, J. O. Besenhard, Editor, p.553-563, Wiley-VCH, Weinheim, Germany (1999).
(12) G. Venugopal, J. Moore, J. Howard, S. Pendalwar, J. Power Sources, 1999, 77, 34.
(13) D. E. Fenton, J. M. Parke & P. V. Wright, Polymer, 1973, 14, 589.
(14) M. B. Armand, J. M. Chabagno, and M. Duclot, Second International Meeting solid Electrolytes, Extended Abstract, St. Andrews, Scotland, 1978, September 20-22.
(15) M. Armand, Annu. Rev. Mate, Sci. 1986, 245, 4.
(16) D. F. Shriver, M. A. Ratner, Chem. Rev. 1988, 88, 109.
(17) M. B. Armand, J. M. Chabagno, and M. Duclot, , in Fast Ion Transport in Solids, P. Vashista, J. N. Mundy, and G. K. Shenoy, Editors, p. 131-136, Elsevier, North-Holland, Amsterdam, Netherlands (1979).
(18) P. Discussion, J. Power Sources, 1997, 68, 173.
(19) J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. McKinnon, and S. Colson, J. Electrochem. Soc., 1991, 138, 2859.
(20) J. R. Dahn, U. von Sacken, M. W. Juzkow, and H. Al-Janaby, J. Electrochem. Soc., 1991, 138, 2207.
(21) J. Evans, C. A. Vincent, and P. G. Bruces, Polymer, 1987, 28 , 2324.
(22) P. G. Bruces, M. T. Hardgrave, and C. A. Vincent, Solid state Ionics , 1992, 53-56, 1087.
(23) I. I. Olsen, R. Koksbang, E. Skou, Electrochim. Acta., 1995, 40, 1701.
(24) M. Doyle, T. F. Fuller, and J. Newman, Electrochim. Acta., 1994, 39, 2073.
(25) J. R. MacCallum, C. A. Vincent, Polymer Electrolyte Reviews-1, Elsevier Applied Science, London, UK (1987)
(26) J. R. MacCallum, C. A. Vincent, Polymer Electrolyte Reviews-2, Elsevier Applied Science, London, UK (1989)
(27) C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Solid State Ionics, 1983, 11, 91.
(28) R. Borkowska, J. Laskowski, J. Plocharski, J. Przyluski, and W. Wieczorek, J. Appl. Electrochem., 1993, 23, 991.
(29) M. Watanabe, M. Kanba, H. Matsuda, K.. Mizoguchi, I. Shinohara, E. Tsuchida, and K. Tsunemi, Makromo. Chem.-Rapid. Commun., 1981, 2, 741.
(30) M. Watanabe, M. Kanba, K. Nagaoka, I. Shinohara, J. Appl. Electrochem., 1982, 27, 4191.
(31) M. Watanabe, M. K.anba, K. Nagaoka, and I. Shinohara, J. Polym. Sci. : Polym. Phys. Edit., 1983, 21, 939.
(32) K. M. Abraham, M. Alamgir, J. Electrochem. Soc., 1990, 137, 1657.
(33) K. M. Abraham, M. Alamgir, U.S. Patent, 1993, No.5, 219, 679.
(34) F. Croce, F. Gerace, G. Dautzenberg, S. Passerini, G. B. Appetecchi, B. Scrosati, Electrochim. Acta., 1994, 39, 2187.
(35) S. Slane, M. Salomon, J. Power Sources, 1995, 55, 7.
(36) G. Dautzenberg, F. Croce, S. Passerini, B. Scrosati, Chem. Mater., 1994, 6, 538.
(37) D. Peramunage, D. M. Pasquariello, K. M. Abraham, J . Electrochem. Soc., 1995, 142, 1789.
(38) H. S. Choe, B. G. Carroll, D. M. Pasquariello, K. M. Abraham, Chem. Mater., 1997, 9, 369.
(39) F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane, M. Salomon, Chem. Mater., 1993, 5, 1268.
(40) Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang, L. Chen, J. Electrochem. Soc., 1997, 144, 778.
(41) Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Solid State Ionics, 1999, 121, 141.
(42) K. M. Abraham, H. S. Choe, D. M. Pasquariello, Electrochim. Acta., 1998, 43, 2399.
(43) T. lijima, Y. Toyoguchi, N. Eda, Denki Kagaku, 1985, 53, 619.
(44) O. Bohnke, C. Rousselot, P. A. Gillet, C. Truche, J. Electrochem. Soc., 1992, 139, 1862.
(45) O. Bohnke, G. Frand, M. Rezrazi, C. Rousselot, C. Truche, Solid State Ionics, 1993, 66, 97.
(46) G. B. Appetecchi, F. Croce, B. Scrosati, Electrochim. Acta. , 1995, 40, 991.
(47) X. Liu and T. Osaka, J. Electrochem. Soc., 1997, 144, 3066.
(48) E. Quartarone, C. Tomasi, P. Mustarelli, G. B. Appetecchi, F. Croce, Electrochim. Acta. , 1998, 43,1435.
(49) G. Pistoia, A. Antonini, G. Wang, J. Power Sources, 1996, 58, 139.
(50) H. Y. Sung, Y.Y. Wang, C. C. Wan, J. Electrochem. Soc., 1998, 145, 1207.
(51) Y. Y. Wang, C. C. Wan, H. Y. Sung, U.S. Patent No.5, 1999, 874, 185.
(52) S. Rajendran, T. Uma, J. Power Sources, 2000, 87, 218.
(53) E. Tsuchida, H. Ohno, K. Tsunemi, Electrochim. Acta, 1983, 28, 591.
(54) K. Tsuchida, H. Ohno, E. Tsuchida, Electrochim. Acta, 1983, 28, 833.
(55) A, S. Gozdz, C. N. Schmutz, J. M. Tarascon, U.S. Patent No.5, 1994, 296, 318.
(56) A. S.Gozdz, C. N. Schmutz, J. M. Tarascon, P.C. Warren, U. S. patent No.5, 1995, 418, 91.
(57) A. S. Gozdz, J. M. Tarascon, and P. C. Warren, U.S. Patent No.5, 1995, 460, 904.
(58) J. M. Tarascon, A. S. Gozdz, C. N. Schmutz, F. Shokoohl, P. C. Warren, Solid State Ionics, 1996, 86-88, 49.
(59) Z. Jiang, B, Carroll, and K. M. Abraham, Electrochim. Acta, 1997, 42, 2667.
(60) P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, T. Sakai. Y. Saito, M. Mizuhata, A. Kajinanii, S. Deki, Solid State lonics, 1999, 126, 285.
(61) G. B. Appetecchi, F. Croce, A. De Paolis, B. Scrosati, J. Electroanal. Chem., 1999, 463, 248.
(62) A. M. Voice, G. R. Davies, I. M. Ward, Polym. Gels Networks, 1997, 5, 123.
(63) P. Mustarelli, E. Quartarone, C. Capiglia, C. Tomasi, A. Magistris, Solid State lonics, 1999, 122, 285.
(64) I. M. Ward, M. .I. Wilhamson, H. V. St. A. Hubbard, J. P. Southall, G. R. Davies, J. Power Sources, 1999, 81-82, 700.
(65) P. E. Stallworth, J. J. Fontanella, M. C. Wintersgill, C. D. Scheidler. J. J. Immel, S. G. Greenbaum, A. S. Gozdz, J. Power Sources, 1999, 81-82, 739.
(66) V. Arcella, A. Sanguineti, E. Quartarone, P. Mustarelli, J. Power Sources, 1999, 81-82, 790.
(67) F. Boudin, X. Andrieu, C. Jehoulet, I. I. Olsen, J. Power Sources, 1999, 81-82, 804.
(68) C. Capiglia, Y. Saito, H. Yamamoto, H. Kageyama, P. Mustarelli, Electrochim. Acta, 2000, 45, 1341.
(69) Y. Saito, C. Capiglia, H. Yamamoto, and P. Mustarelli, J. Electrochem. Soc., 2000, 147, 1645.
(70) T. Michot, A. Nishimoto, M. Watanabe, Electrochim. Acta, 2000, 45, 1347.
(71) J. Y. Song, Y. Y. Wang, C. C. Wan, J. Power Sources, 1999, 77, 183.
(72) L. H. Sperling, “Introduction to Physical Polymer Science”, 2nd ed., p.382-457, John Wiley & Sons, New York, USA (1993).
(73) H. S. Choe, J. Giaccai, M. Alamgir, K. M. Abraham, Electrochim. Acta., 1995, 40, 2289.
(74) H. Kataoka, Y. Saito, T. Sakai, J. Phys. Chem. B , 2000, 104, 11460.
(75) C. R. Jarvis, W. J. Macklin, A. J. Macklin,N. J. Mattingley, E. Kronfli, J. Power Sources , 2001, 97-98, 664.
(76) K. M. Abraham. Z. Jiang, and B. Carroll, Chem. Mater., 1997, 9, 1978.
(77) C. S. Kim, S. M. Oh, Electrochim. Acta , 2001, 46, 1323.
(78) Jean. Li, Khan, M. Ishrat, Macromolecules, 1993, 26, 4544.
(79) G. T. K. Fey, W. Li, J. R. Dahn, J. Electrochem. Soc., 1994, 141, 2279.
(80) R. D. Armstrong, M. D. Clarke, Solid State Ionics. 1984, 11, 305.
(81) C. C. Hunter, D. C. Silnclair, A. R. West, J. Power Sources. 1988, 24, 157.
(82) H. Hong, C. Liguan, H. Xuejie, Electrochim. Acta., 1992, 37, 1671.
(83) F. Croce, B. Scrosati, J. Power Sources, 1993, 9, 43 .
(84) J. T. Mottram, B. Geary, R. Taylor, Journal of Material Science, 1992, 27.
(85) H. D. Wu, C. C. Ma, M. S. Li, Y. F. Su, Y. D. Wu, Composites, Part A: Appl. Sci. Manu. 1997, 28A, 895.
(86) J. F. Rabek, “Experimental Methods in Polymer Chemistry”, New York, 1980 .
(87) A. S. Douglas, J. L. James, “Principles of Instrumental Analysis” , Fourth Edition Chap. 23.
(88) R. M. Silverstein, F. X. Webster, “Spectrometric Identification of Organic”, 1963.
(89) J. G. Webster, “Eelctrical Impedance Tomography”, Adam Hilger, Bristol, 1990.
(90) “Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
(91) M. M. E. Jacob, A. K. Arof, Electrochimica Acta, 2000, 45, 1701.
(92) S. Rajendran, O. Mahendran, R. Kannan, Fuel, 2002, 81, 1077.
(93) S. Rajendran, O. Mahendran, T. Mahalingam, European Polymer Journal , 2002, 38, 49.
(94) Q. Gao, J. I. Scheinbeim, Macromolecules, 2002, 33, 7564.
(95) Y. Zhao, M. W. Urban, Langmuir, 1999, 15, 3538.
(96) D. C. Basett, Developments in Crystalline Polymer I , 1982 , chap.5