| 研究生: |
吳政倫 Zheng-Lun Wu |
|---|---|
| 論文名稱: |
旋轉鼓內漿態顆粒分離與流動行為之探討 The investigation about segregation and dynamic properties in slurry rotating drum |
| 指導教授: |
蕭述三
Shu-San Hsiau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 顆粒流 、液體黏度 、填充率 、安息角 、分離 |
| 外文關鍵詞: | Granular flow, liquid viscosity, segregation, angle of repose, filling ratio |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以類二維的精密旋轉鼓為實驗設備,並以實驗的方式分別針對在當顆粒和顆粒的間隙被液體完全充滿時,針對在不同填充率下,間隙流體黏度對於顆粒的分離現象、安息角(angle of repose)和流動型態的探討,與在相同填充率但不同黏度條件下,旋轉鼓中顆粒的分離現象和安息角關聯性的探討。
實驗結果顯示添加之液體量為飽和態(slurry),在相同顆粒填充率的情況下,隨著間隙流體黏度越大,分離強度越低,用於抵抗因為顆粒重量產生的下滑力的力量將越大,因此安息角角度將會隨之增加。在固定間隙流體黏度的情況下,隨著填充率的增加,分離強度值會隨之變大,分離速率則會隨之變小。隨著間隙流體黏度越大,顆粒之流動型態從滾動型態(rolling)轉變成翻滾型態(cascading),但是當填充率較低的情況下,若顆粒的流動形態要從滾動型態(rolling)轉變成翻滾型態(cascading)則需要更高的間隙流體黏度。
A quasi-2D rotating drum is used to investigate segregation phenomena in this study. The effects of viscosity of interstitial fluid and filling ratio on segregation mechanism, repose angle and flowing behavior are experimental studied in this thesis. The relation between segregation index and repose angle is also discussed.
The result shows that segregation index decreases and repose angle increases with the increase of interstitial fluid viscosity under the same filling ratio. The result also indicates that segregation index is larger and segregation rate becomes smaller as the filling ratio increases with the same viscosity of interstitial fluid. Finally, the result shows that the flowing regime changes from rolling regime to cascading regime with increasing the interstitial fluid viscosity.
1 S. M. Boisseau and N. L. Bolay, The mixing of polymeric powder and the grinding medium in a shaker beadmill, Powder Technol. 123 (2002) 212-220.
2 O. S. Sudah, D. C. Beach, and F. J. Muzzio, Quantitative characterization of mixing of free-flowing granular material in tote (bin)-blenders, Powder Technol. 126 (2002) 191-200.
3 S. M. Chaudeur, H. Berthiaux, and J. A. Dodds, Experimental study of the mixing kinetics of binary pharmaceutical powder mixtures in a laboratory hoop mixer, Chem. Eng. Sci. 57 (2002) 4053-4065.
4 P. A. Shamlon, Handling of Bulk Solids, Butterworth, London, 1988.
5 賈魯強和黎璧賢,「漫談顆粒體物理」,物理雙月刊,第二十三卷第四期,503-510頁,2001年。
6 C. S. Campbell, Rapid granular flows, Annu. Rev. Fluid Mech. 22 (1990) 57-92.
7 X. Y. Liu, E. Specht, and J. Mellmann, Experimental study of the lower and upper angles of repose of granular materials in rotating drums, Powder Technol. 154 (2005) 125-131.
8 N. A. Pohlman, B. L. Severson, J. M. Ottino, and R. M. Lueptow, Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation, Phys. Rev. E. 73 (2006) 031304: 1-9.
9 G. Felix, V. Falk, and U. D’Ortona, Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness, Powder Technol. 128 (2002) 314-319.
10 C. M. Dury and G. H. Ristow, Competition of mixing and segregation in rotating cylinders, Phys. Fluid 11 (1999) 1387-1394.
11 S. Chakraborty, P. R. Nott, and J. R. Prakash, Analysis of radial segregation of granular mixtures in a rotating drum, Eur. Phys. J. E 1 (2000) 265-273.
12 G. H. Ristow, Particle mass segregation in a two-dimensional rotating drum, Euro. Lett. 28 (1994) 97-101.
13 N. Jain, J. M. Ottino, and R. M. Lueptow, Regimes of segregation and mixing in combined size and density granular systems: an experimental study, Granul. Matter 7 (2005) 69-81.
14 N. Thomas, Reverse and intermediate segregation of large beads in dry granular media, Phys. Rev. E. 62 (2000) 961-974.
15 K. M. Hill, G. Gioia, and D. Amaravadi, Radial segregation patterns in rotating granular mixture: waviness selection, Phys. Rev. Lett. 93 (2004) 224301: 1-4.
16 I. Zuriguel, J. M. N. T. Gray, J. Peixinho, and T. Mullin, Pattern selection by a granular wave in a rotating drum, Phys. Rev. E 73 (2006) 061302: 1-4.
17 H. P. Kuo, R. C. Hsu, and Y. C. Hsiao, Investigation of axial segregation in a rotating drum, Powder Technol. 153 (2005) 196-203.
18 D. R. Van Puyvelde, B. R. Young, M. A. Wilson, and S. J. Schmidt, Experimental determination of transverse mixing kinetics in a rolling drum by image analysis, Powder Technol. 106 (1999) 183-191.
19 D. Eskin and H. Kalman, A numerical parametric study of size segregation in a rotating drum, Chem. Eng. Process 39 (2000) 539-545.
20 R. Albert, I. Albert, D. Hombaker, P. Schiffer, and A. L. Barabasi, Maximum angle of stability in wet and dry spherical granular media, Phys. Rev. E 5 (1997) 6271-6274.
21 P. R. Rennie, X. D. Chen, C. Hargreaves, and A. R. Mackereth, A study of the cohesion of dairy powders, J. Food. Eng. 39 (1999) 277-284.
22 N. Fraysse, H. Thome, and L. Petit, Humidity effects on the stability of a sandpile, Eur. Phys. J. B 11 (1999) 615-619.
23 D. W. Howell, I. S. Aronson, and G. W. Crabtree, Dynamics of electrostatically driven granular media: Effects of humidity, Phys. Rev. E. 63 (2001) 050301: 1-4.
24 S. T. Nase, W. L. Vargas, A. A. Abatan, and J. J. McCarthy, Discrete characterization tools for cohesive granular material, Powder Technol. 116 (2001) 214-223.
25 K. Jain, D. L. Shi, and J. J. McCarthy, Discrete characterization of cohesion in gas-solid flows, Powder Technol. 146 (2002) 160-167.
26 A. Samadani and A. Kudrolli, Angle of repose and segregation in cohesive granular matter, Phys. Rev. E. 64 (2001) 051301: 1-9.
27 S. S. Hsiau and S. C. Yang, Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect on liquid bridges, Chem. Eng. Sci. 58 (2003) 339-351.
28 H. M. Li and J. J. McCarthy, Controlling cohesive particle mixing and segregation, Phys. Rev. Lett. 90 (2003) 18430: 1-4.
29 M. M. Kohonen, D. Geromichalos, M. Scheel, C. Schierb, and S. Herminghausb, On capillary bridges in wet granular materials, Physica A 339 (2004) 7-15.
30 H. M. Li and J. J. McCarthy, Phase diagrams for cohesive particle mixing and segregation, Phys. Rev. E 71 (2005) 021305: 1-8.
31 S. C. Yang and S. S. Hsiau, The simulation of powders with liquid bridges in a 2D vibration bed, Chem. Eng. Sci. 56 (2001) 6837-6849.
32 B. J. Ennis, G. I. Tardos, and R. Pfeffer, The influence of viscosity on the strength of an axially strained pendular liquid bridge, Chem. Eng. Sci. 45 (1999) 3071-3088.
33 M. J. Adams, C. Thornton, and G. Lian, First International Particle Technology Forum, Agglomerate Coalescence 1 (1994) 220-224.
34 T. G. Mason, A. J. Levine, D. Ertas, and T. C. Halsey, Critical angle of wet sandpiles, Phys. Rev. E 60 (1999) R5044-R5047.
35 H. Henein, J. K. Brimacomble, and A. P. Watkinson, Experimental study of transverse bed motion in rotary kilns, Metall. Trans. B (1983) 191-205.
36 J. Rajchenbach, Flow in powders: from discrete avalanches to continuous regime, Phys. Rev. Lett. 65 (1990) 2221-2224.
37 J. Mellmann, The transverse motion of solids in rotating cylinders-forms of motion and transition behavior, Powder Technol. 118 (2001) 251-270.
38 Y. L. Ding, R. Forster, J. P. K. Seville, and D. J. Parker, Granular motion in rotating drums: bed turnover time and slumping-rolling transition, Powder Technol. 124 (2002) 18-27.
39 S. Y. Lim, J. F. Davidson, R. N. Forster, D. J. Parker, D. M. Scott, and J. P. K. Seville, Avalanching of granular material in a horizontal slowly rotating cylinder: PEPT studies, Powder Technol. 138 (2003) 25-30.
40 A. C. Santomaso, Y. L. Ding, J. R. Lickiss, and D. W. York, Investigation of the granular behavior in a rotating drum operated over a wide range of rotational speed, Chem. Eng. Res. Design. 81 (2003) 936-945.
41 A. A. Boateng and B. V. Barr, Modeling of particle mixing and segregation in the transverse plane of a rotary kiln, Chem. Eng. Sci. 51 (1996) 4167-4181.
42 A. Ingram, J. P. K. Seville, D. J. Parker, X. Fan, and R. G. Forster, Axial and radial dispersion in rolling mode rotating drums, Powder Technol. 158 (2005) 76-91.
43 A. A. Boateng, Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder, Int. J. Multiphase flow 24 (1998) 499-521.
44 A. V. Orpe and D. V. Khakhar, Scaling relations for granular flow in quasi-two-dimensional rotating cylinders, Phys. Rev. E 64 (2001) 031302: 1-13.
45 N. Jain, J. M. Ottino, and R. M. Lueptow, Effect of interstitial fluid on a granular flowing layer, J. Fluid Mech. 508 (2004) 23-44.
46 H. M. Li and J. J. McCarthy, Controlling cohesive particle mixing and segregation, Phys. Rev. Lett. 90 (2003) 18430: 1-4.
47 J. J. McCarthy, Micro-modeling of cohesive mixing processes, Powder Technol. 138 (2003) 63-67.
48 H. M. Li and J. J. McCarthy, Cohesive particle mixing and segregation under shear, Powder Technol. 164 (2005) 58-64.
49 P. V. Danckwerts, The definition and measurement of some characteristic of mixtures, Appl. Sci. Res. 3 (1952) 279-296.
50 N. E. Dorsey: Properties of ordinary water-substance in all its phases: water vapor, water, and all the ices, 7nd Ed., New York, Reinhold Pub. Corp. (1940)